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Abstract —In this paper, we introduce a new notation to simplify the
solution of scattering by strips or disks. We make use of vector Fourier
transforms [1] and introduce a double dot product for inner products in an

bly infinite di | linear vector space. We characterize the
scattering by a strip or a disk with a reflection operator and a transmission
operator that relate the continuum of scattered waves to a continuum of
incident waves. After the reflection operator for a single strip or disk is
derived, we show how the reflection operator for a strip or disk in the
presence of another reflecting medium, e.g., a layered medium, can be
derived. The scattering by N strips or disks in a homogeneous medium is
also discussed. Next, we derive the reflection operator for an embedded
strip or disk in a layered medium. The method can be generalized to N
strips or disks embedded in a layered medium and to a slot or an aperture.
These operators have applications in a number of scattering, guidance, and
resonance problems. In the paper that follows this one, we shall show how
such concepts can be used to formulate the guidance and resonance
problems involving N strips or disks whose reflection operator is known.

I. INTRODUCTION

VEN THOUGH microstrip transmission lines have

been around since before World War II, the research
on the analysis of microwave integrated circuits (MIC’s) is
still in progress. A review of this progress is available in
[2]. This is partly due to the growing importance of mono-
lithic microwave integrated circuits (MMIC’s) and high-
speed circuitry in computer technology. A better capability
in the analysis of microwave integrated circuits is needed
to advance the technology in this field.

In the beginning, the analyses of microwave integrated
circuits were mainly involved with microstrip lines. Ana-
lytic solutions were important at the beginning due to the
skimpy computation power then available [3]-[5]. How-
ever, the computer technology has called for numerical
methods in which the solutions can be obtained more
precisely. There have been extensive publications on this
topic and we have listed some of these publications in
[6]-[22]. This list is by no means complete. Many of the
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analyses involve the solution of integral equations in the
Fourier transform domain [10]-[22] rather than the real
space domain, because microwave integrated circuits are
built on top of a dielectric substrate. The Green’s function
for such a class of problems exists in a simple form in the
Fourier transform domain or the spectral domain. A re-
lated idea is found in the literature on mixed boundary-
value problems and dual integral equations [23]. Ttoh and
Mittra were the first to bring these concepts to the micro-
wave community [10].

The need to push for higher speed circuitry in computer
technology, the growing complexity of MMIC’s, and the
recent interest in microstrip antennas and arrays all con-
tribute to the growing complexity of the geometry involved
in microwave integrated circuits. However, these problems
need to be solved despite their complexities.

In this paper, we review the past work done in this area
and introduce a new formulation for this class of prob-
lems. We will introduce a new notation which will make
the formulation of such a class of problems simpler. With
the introduction of the new notation, the underlying physics
of the scattering processes is not lost, but is clarified. We
will show how to use the new notation, together with
vector Fourier transforms [1], to derive the reflection and
transmission operators of a class of problems ranging from
a single strip or disk to N embedded strips or disks in a
layered medium. The reflection and transmission operators
relate the continuum of scattered waves to a continuum of
incident waves. Since the new notation elucidates the
physics better, we are able to give our operators physical
interpretations. Furthermore, all the operators we have
derived are computable.

Since we are introducing a number of new concepts in
this work, we will divide the work into two parts. The first
part is mainly concerned with the description and interpre-
tation of the new notation and the use of vector Fourier
transforms in the derivation of the reflection and transmis-
sion operators. These operators have applications in some
scattering problems, for example, in calculating the radar
scattering cross section of frequency selective surfaces, and
in some resonance and guidance problems. In the second
part of the work, which will be reported in the next paper
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(pp. 1498-1506, this issue), we shall illustrate the use of
such concepts to calculate certain guidance and resonance
problems related to microwave integrated circuits.

II. Basic CONVENTIONS

A. Operators and Double Dot Product

We will introduce some new notations here which will
help simplify the formulation of this class of problems.
With these notations, complicated and long expressions
can be written compactly. These notations also elucidate
the physics of the problem better. Hence, they can help in
the solutions of complicated scattering and guidance prob-
lems.

Consider any field ¢(r), which is a solution of the wave
equation and which is due to a source at the origin. It can
be written in a homogeneous medium via the use of
Fourier transforms as

o(r) = fdkseik:'r,i,'(kx)eik,m (1)

where k =%k, + pk,, r,=3Xx+Jy, k.= Vk?—kZ, and
[dk,=[®[®dk, dk,. In the above, the special form of
the integrand follows from enforcing the field to be a
solution of the wave equation and requiring the field to be
outgoing at z = oo (with exp(—iwt) time convention).
The integral can be thought of as an integral summation of
plane waves (including the inhomogeneous plane waves as
well). When an inhomogeneity, which is translationally
invariant in the x and y directions, is introduced at
z=—d, ¢(r) becomes

¢(r) =fdk:e"‘:"‘xp(ks)(e"kf"l+Reiz"fde’kzz)

forz>—d.

)
In the above, R is the appropriate reflection coefficient,
which can be either a Fresnel reflection coefficient, as in
the case of a half-space interface, or a generalized reflec-
tion coefficient, as in the case of a layered medium. In the
integrand, we see that a plane wave incident with a trans-
verse wave vector k, will always be reflected with the same
transverse wave vector k.

However, if the interface is not translationally invariant
in the x and y directions, then the reflected field expres-
sion is not related to the incident field expression just by
using a simple reflection coefficient. This is the case, for
instance, in the problem of scattering from a finite-width
strip. An incident wave with a transverse wavenumber k
gives rise to a spectrum of reflected and transmitted waves
with different transverse wavenumbers k;. In this case, we
can define a reflection operator that properly describes the
scattering process. Hence, we can express the field as

o(r) =fdk:ei":"‘(\lj(ks)eik112[
+ etk [ KR (ke kep) e 4 (k)

forz>—d (3)
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if the interface is at z = — d and k, =\k*— k/*. Equation
(3) can be interpreted to mean that each reflected wave
with a transverse wavenumber k, is a consequence of a
spectrum of incident waves with different transverse wave-
numbers k’; hence, we have an integral over k.

The reflection operator of (3) involves an integral with
respect to k. It would be very desirable to cast this
operator into a simpler notation since we will be using it
extensively. We can think of an integral as the limiting
case of an infinite sum. Such an infinite sum § may be
given by

S=Y Ak,R(mAk,, nlhk)e™*=?

(4)

= Z Rmneikz"d
n

where k,, ={k>—(nAk,)’ and R, is defined as

Ak ,R(mAk , nAk,). The above can be written as a matrix
inner product (dot product), that is,

S=R-eA

(5)

where

iK,d

I
I
=

It

mn | and e eiknd |, (6)

The integral I given by

1= [dkiR(k, k;)e™: (7)
as it appears in (3) is a limiting case of the summation §
when the index n now changes continuously or is a con-
tinuum. Therefore, we define an operator # which is an
extension of a matrix operator with infinitely many rows
and infinitely many columns and which is continuously
indexed; i.e., # is the version of R where m and n are
continuum quantities. Also, we define an infinitely long
vector e'*:* which is the continuum version of e‘*:. Fi-
nally, we define a double dot product as an alternative to
an ordinary dot product to multiply continuously indexed
matrices and vectors. Then, the integral I can be written
compactly as

I=R:e'* (8)
An integration over the k, variable is implied in the
double dot product. An operator in the above definition is
a representation of a function with two arguments, e.g.,
A(k,, k), that maps a single argument function defined
over k! to another single argument function defined over
k,. We shall denote operators with “calligraphic” char-
acters in the rest of the paper. From the above definition,
an identity operator is just the Dirac delta function 8(k, —
k).
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Below are some examples related to the use of the
double dot product. The first is

[k A(k,)B(K,)C(k,)
= [k, A(k,) [ dkis (k, — k})B(k[)C(K;)

=A:%:C (9a)

where % is a diagonal operator which is a representation
of the two argument function 8(k; — k) B(k]). Hence, the
diagonal operator is related to the single argument func-
tion B(k!), and we shall call B(k) the diagonal element
of the diagonal operator Z. In the above, two integrals are
implicit in the two double dot products. It is also the
continuum analogue of X, 4, B,C, which can be written as
A’-B-C where 4 and C are column vectors containing A4,
and C,, respectively, and B is a diagonal matrix contain-
ing B, on the diagonal. The next example is

[k A'(k,)-B(k,)-C(k,)
= [ dk,4'(k,)
- [ ks (k, - k) B(k)-C(k!)

=A4“%:C (9b)
where # is a block diagonal operator. The third example is
fdksR(ks,k;)S(ks)=9:S (9¢)

where 2 is a nondiagonal (full) operator. The last example
is

[k F-e*:G(k,)- [diR(k,, k;)-h,(k?)

=F:e™?:G:Z:h, (9d)

where e¥+* is a diagonal operator, Z is a block diagonal

operator, and Z is a nondiagonal operator.

Furthermore, the inverse of a diagonal operator defined
in the above sense is easily found. For example, if & is a
diagonal operator whose diagonal element is B(k,), then
the inverse of %, ie., %!, is just an operator with
diagonal element 1/B(k,). We can prove this quite easily
because

. -1 _ ’ L’ ’ r_
BB = [aks(k,—k;)B(k))8(k, )

=8(k,— k') =75. (%)

B. Derivation of Field Expressions in a Homogeneous
Medium

We would like to find the field expressions due to an
arbitrary horizontal current sheet source located at z =z’
in a homogeneous medium. Starting with the scalar wave
equation for the longitudinal component of the electric
field,

(V2+k?)E,(x,y,2)=0 (10)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 11, NOVEMBER 1988

the solution for E,(x, y, z) can be written as

1 ) .
E(x,y,z)= 4—,,zf dke™"E, (k,,z).  (11)

By requiring E,(x, y,z) to be a solution of the wave
equation with a source at z = z’, we can deduce that

E,(k, z) = £ &(k)e™d 7 (12)

The +sign comes about because a horizontal current sheet
gives rise to E, that is antisymmetric about z = z’. Thus,
E,(x, y, z) can be written as

forzzz'.

1 ik, r, 5 ik,|z—2’
E.(x,y,2) =i4—ﬂ—zfdks€"" & (k)
forzzz'. (13)
Similarly, we can express H,(x, y, z) as
1 ik, r.J ik,|z—z2’
H(x,y,2) = 7= [dke™h(k,)e* = (14)

The transverse-field components are derived from the
longitudinal components as

1 ‘ ik - 1 ~
E(r)= m/dk:e' o (- k,ké(k,)

— wpk, X zh(k))e™ =1 forzZz (15a)

and

1 ik,-r, 1 - 7
Hy(r) = [dk,e™ o (F (k)

+wek, X 28(k,))e™*~*1  forzZz (15b)

by applying the relations given in [24, sec. 3.6]. Equations
(15a) and (15b) can be written more compactly as

1 I ik,|z—2'|
= o5 [k F(k,, 1) ¥ le, (k,)

EX
E(r) = [E

(16a)
and
H
CHEA

where sgn(z) is the sign of z, and

ke(k) weal(k,)
k, k,
ek)=| iy | =l
ohik) i)
(17)

and F(k,,r,) is given by

_ ekr |k, k,
F(ks’ rs) = k k —k. I
s y X
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equations (16a) and (16b) are vector Fourier transform
integrals [1]. A vector Fourier transform (VFT) pair exists
through the relationships

1 _ -
J(r) = 55 [k, Flkyor) (k) (19)

J (k) = [drF(k,,~r)-J(r,). (19b)

The discontinuity of H, at z =z’ in (16b) is due to the
presence of a current sheet at z = z’. Hence, we can write

J(r) = [ﬂ =- #fdksf(ks,rs).Zhs(kx). (20)

Using VFT, we deduce that
T (k,) = —2h(k,) (21)

where J:(ks) is the VFT of J(r). Defining the dyadic
Green’s function G(k;) as

e,(k,)=—G(k,)2h,(k,) =G (k,)-J(k,) (22)
(16a) and (16b) can be rewritten as

B(r) = 5 [ e Fk, )16 (k)G (k) (23)

w0 = B Fk, ) e )
(23b)
where
k,
_ 1 2e ©
G =-3] % (24)

k

r4

The field expressions of (23) form the basic convention
that we will use in the following sections to derive some
reflection operators and guidance conditions. However,
before using these expressions in other sections, we will
take a final step to cast them in a more compact form,
namely, in double dot product notation:

E.(r)=F(r): e 1.4 ],

sgn(z—2z') . ) N s
ﬂ(-z—)F(rs):e’Xf"_z':Js. (25b)

In the above, we have absorbed 1/472 in J,. We shall do
the same for the rest of the paper. Note how compact the
expressions are after using the new notations. In the ex-
pressions, we can also see waves propagating away from
z =z’ via the propagator e’*:>~7\. The above looks like a
separation of variables expression, but in higher dimen-
sions.

(25a)

H/(r)=~-

III. REFLECTION AND TRANSMISSION OPERATORS

A. A Strip or a Disk in a Homogeneous Medium

In this section, we will derive the reflection and trans-
mission operators characterizing the scattering by a thin,
infinitely conducting strip or disk of finite size. The deriva-
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Fig. 1. Strip or disk in a homogeneous medium.

Js(rs)

—— !

z=2z

€, Ho
Jf("!)
z=0

tion for the disk case is very similar to that for the strip
case. In the case of a strip, we may reduce our double
integrals to single integrals, since we only need a one-
dimensional Fourier transform. In the rest of the paper, we
may neglect to mention specifically the disk case, but it is
understood from the context that the derivation for the
disk case is very similar.

In deriving the reflection operator for the strip, we
illuminate the strip by a source as shown in Fig. 1. We
may assume that the illuminating source is from a horizon-
tal current sheet as described in Section II. Except for the
strip and the source, the medium is homogeneous. The
strip is located at z =0. When the strip is illuminated by a
source, induced currents on the strip cause reradiation or
scattering. In the manner of (25), with sources at z =2z’
and z =0, we can write the total field for all z as

E(r)=F(r): (e =9:G: J + 1. G JT) (26a)
H,(r) =~ 3F(1) (sgn (= ) e ]
+sgn(z)e: 1 JT). (26b)

JI(k,) in the above is the VFT of the induced current on
the illuminated strip. We can expand the induced surface
current JI(r,) on the strip as

J(r) =X J,(r)-a, (27)

where J,,(r,) may be of the form

J},,(r:)=[J""(()rS) Jyn(()rs)] and a=[(;] (28)

Alternatively, we can write (27) more compactly as

J(r)=f'(r)4 (29)
where
Fi(r)y=1-F(r)-] and A=|ai|. (30)
Taking the VFT of (29), we have
J(k,) = f1(k,)-A. (31)

Substituting (31) into (26a), we have
E(r)=F(r): (e & fl-a+ 120 g:7J). (32)

We require that E,(r,, z = 0) = 0 on the strip. Setting z=0
in (32), multiplying by a vector of testing functions, f(r,),
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and integrating over the strip, we have

[dn f(r)-F(r): (e :@: J+F: fr-4) =0 (33)

where
£(r) = | Fo(r) (34)
Defining
fk,) = [dr,f(r)-F(k,r) (35)
(33) becomes
(k) (e G J+F: f-4)=0. (36)
Solving for A, we have ’
A=-T 1[G X J (37)
where
T=f:9:f. (38)

In the above, T is a matrix with discrete indexing. Its size
depends on the length of the basis function and testing
function vectors we have in (30) and (34). In theory, it
should be an infinite size matrix. However, from a practi-
cal viewpoint, we need to truncate this matrix. This is
equivalent to choosing vectors of length N in both (30)
and (34). In this case, T' will be a 2N X 2N square matrix
which is easily invertible on a computer. Note that the
same result would have been arrived at if we applied
Galerkin’s method [25] to the integral equation obtained
by requiring that E (r,, z = 0) = 0 on the strip, except that
our notation is more symbolic and compact.

Since J7(k,) or A is linearly proportional to J(k,), we
can rewrite (26) as

E(r)=F(r): (X214 Xl @ i X7): G J
(39a)
H,(r) = = 1F(r): 95 (sgn (s — )i
+sgn(z)e™: B ™) G J (39b)
where
R=-9: fL.TLf (40)

is the reflection operator for the electric field for the

finite-width strip. It is defined as the “ratio” of the re-

flected electric field to the incident electric field z = 0.
When z < 0, we can rewrite (39) as

E(r)=F(r):e ¥ . F:4: %% ], (41a)

H,(r)=1F(r):9 "o T X% G J (41b)
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Region 1
z=10
Region 2
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Region 3
z = —hg - ]’lg
Region 4
Region N
Fig. 2. Strip or disk over a layered medium.
where

TG+ (42)
is the transmission operator of the strip. % and  are, in
general, nondiagonal operators.

B. A Strip or a Disk over a Layered Medium

If a source is over a layered medium as shown in Fig. 2,
the source generates a spectrum of plane waves that will be
reflected by the layered medium. The TM waves will be
reflected according to the TM reflection coefficients while
the TE waves will be reflected according to the TE reflec-
tion coefficients. We can easily show that the fields above
the layered medium can be written as

E,(r)=F(r): (e’”h"Z’Z" + et 9_712 : emfz') G, T,

>0 (43a)

Hls(r) = %f(rs) : (Sgn(z - Z’)el‘)fl:|z’f|

+et R, eij(llzl) s z>0. (43b)
The subscript 1 denotes a quantity associated with region
1. The above is of the form of (39), but the reflection
operators are diagonal operators expressible in terms of
generalized reflection coefficients. In particular, %,, is the
operator representation of the matrix reflection coefficient

-RM 0

R, = -
12 0 RB:

. (44)

We shall present the derivation of R,, in the Appendix.
When the layered medium reduces to a half-space, RTM
and RIF are just the Fresnel reflection coefficients.

If we have a strip on top of the layered medium located
at z=0 as shown with the dotted lines in Fig. 2, the
induced currents on the strip will generate a field in
addition to that of (43). Consequently, for a strip on top of
the layered medium illuminated by the source field given
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by (43), we have
E,(r) =F(r): {(eww_z" +elit G, e"”/“zl) 9, 0,
+ (eif“lz_m + et 9_;12 : eiﬂ‘z‘) 9, f{s},
z>0 (45a)
H, (r)=—1F(r): {(Sgn(z — z')ei¥irlz=7

+ et R, e“fhz') A

s
+ (sgn(z)e""“"’zll + e R, e"’fh"'l) : -’11:},

z>0. (45b)

In the above, JI(k,) is_the unknown to be sought. The
procedure of finding J/(k,) is similar to that of the
previous subsection. Similar to (31), we let

Ji (k)= f'(k,)-4.
Imposing the requirement that E,(r,, z=
strip, we have

(46)
z,) =0 on the

F(r): {(e“"“(z'_zl) + e¥:n élz : e“"“zr) 19,

+(i+ e un ﬂiz : e“‘""l) 'Y, f’-A} =0. (47)
Weighting the above by f(r,) as in (33), we arrive at
A=-TLf (]+ e ¥ .9_512 : e""/“’l)

ceulma) g o (48)
where
T=f: (j+ e:n 9?12 : e’“’“ll) (9, fL (49)

Note the form of T is very _similar to that of (38) except
for the modification in the . This new form of ¢ can be
thought of as the new Green’s function that the induced
current on the strip is now radiating with. Making use of
(46) and (48) in (45), we have

E\(r)=F(r): {(e"’“h'”'| + e Gy, e i)

— eUf):(Z_Zl) . (j+ e’-’(fuzl . ju : ei~xfl:zl)
G, frT (ﬁ-%- en R, e"r‘zzl)
:e“‘fl:(zr‘zl)} 9, J,; z>z,.

(50)

We can rewrite the above as
E, (r)=F(r,): (12721 4 ¢z =2), R M=)

9, J,, (51)

Z>Zl

where

s ein — (J; +eM:n g, e’y‘"l)

_ LiN.z .
R=e"1:M: R,

G, frT N f (i + e e""fh"l) (52)
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is the reflection operator relating the upgoing wave to the
downgoing wave in region 1 defined at z=0. For the

layered medium case, %, is diagonal. However, the above
derivation is also valid when %,, is nondiagonal. This is
the case when the strip is on top of another strip, whose
reflection operator is derived in subsection A. Then (52)
can be used to find the reflection operator for two strips
which are on top of each other. In fact, given the reflection
operator for the two-strip case, we can use (52) again to
find the reflection operator of the three-strip case. Hence,
(52) forms a recursive relation from which we can find the
reflection operator of, and hence the scattering from, N
strips in a homogeneous medium.

C. A Strip or a Disk Embedded in a Layered Medium

Next, we would like to find the reflection operator as
defined at z=d, due to a strip or a disk embedded in a
layered medium as shown in Fig. 3. Just as in subsection
B, we can consider first the scattering of the field by the
layered medium in the absence of the strip or disk. In this
case, the field in region 1 is

EC2(r)=F(r,): (ewmz—zw Feimd) . @ em:u'—dl))

1Y, Ty, (532)
HY(r) =~ 1F(r): (sgn(z = 2/) e
+ eiM(z=dy) . jlz : ei"f"(z’_d‘)) L (53b)

where %#,, is the generalized reflection operator for the
layered medium. In this case, it is diagonal. The field in
region 2 in the absence of the strip or disk can be written
as

ES(r) = F(r,): (et 40

4 eiaz—dy) . gf}ﬂ . eifzz(df_dz))

NP LRI AN A (54a)
HO(r)=—-1F(r): ?{l:(f e~ a2 d)

beiHutmd) g eiatfz:(d;—dz))

: 9:'12 Lo d) g L (54b)

In the above, J,, is a generalized transmission operator
that transmits a downgoing wave from region 1 to region
2. We will discuss the derivation of 7, in the Appendix.

In the presence of the strip, induced currents on the
strip will reradiate. The field in region 2 due to the strip is
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Jls(r:)

Region 1
z=d
z=dj

Region 2 Ji,(r,) = 2=z
z=dy
z=dj

Region 3

Fig. 3. Strip or.disk in a layered medium.
then

ES(r)=F(r): (eixfz,v—m + e d) Y N (namd)
+ e Hulz=d) . g . e""zf("f"zﬂ) 9, JI (55a)

HS,(r) = = 3F(r): (sgn(z - 2,) e~

iXy(2=da) . gy . piNa (23— dy)
+e Uy e

(55b)

— e Muli=d) G ewh(d;—m). J!

The derivations of %, and 9, will be discussed in the
Appendix. If the medium is homogeneous below the strip,
then %, =0 and 9, = &,, which is the generalized reflec-
tion operator for the layered medium above the strip.

The total field in region 2 is given by the sum of (54)
and (55). Again, we require that the total E, (r) =0 on the
strip in region 2. Going through the derivation as before,
we expand the surface current density Jj,(r,) at z=z, in
terms of f)(r,)-A. Then, after taking the VFT, we find
that

L. (k) = f(k,)-A. (6)
Requiring that E, (r) =0 on the strip, we deduce that

J=— T f (e—ifz,(Zz‘d{)

+ eiXa:(z2=d) . Ry : ei)i’zl(d{—dz))

Ty, e g

(57)

where

fZ = f;l . (j+ eixzz(zz_dz) . ozz : ei-YZ:(Zz_dz)

+ e Mulnd) . g . e’fzz"’"’zz)) 9, fi. (57a)

The form of T, is again very similar to that of (38) except
for the modification of . This new ¢ is now the new
Green’s function that the current on the strip is radiating
with.

The field in region 1 due to the induced current on the
embedded strip is a consequence of the transmission of the
upgoing wave in region 2. Hence, we can identify the
upgoing wave in region 2 and multiply it by a transmission

operator J,, that transmits an upgoing wave from region
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Region 1
z=d;
z=dj
Region 2 I (ry) 2=z hy
z2=d,
y z=dj
Region 3 Ii(rs) 2= ha
z= d3
y z=dy
Region N Jhu(r,) =z =2y hy
z = dN
Fig. 4. N strips or disks in a layered medium.

2 to region 1. Consequently, the field in region 1 due to the
strip in region 2 is

ES(r) = F(r): e”ut=4) . 7, (errtdi=m

+ el —d) . ewu(zz—d») G, JL (58a)

HE(r) = —4F(r): G 1 s et 7, o (o5t
+ el)fﬁ,(d{—d;) . @2 . ei.)i’z:(zz—dz)) : ?2 : ‘iZIs' (58b)

The total field in region 1 is the sum of (53) and (58).
From (57), we see that J;; is of the form

= Brete .G, (59)

We can define a reflection operator relating the upgoing
wave to the downgoing wave in region 1 when the sub-
surface medium contains a single embedded strip. It is

R=Ry— Ty :(ei-x/z;(d{’lz)
+ e Xa:(d—da) . 0?72 : eiflf(zZ‘dZ)) : 972 : f;’

.f‘z_l.f; : (e*"fzz(zz_d{)

+enad) g ezx’zxd;—dz)) L T, (60)

The above derivation can be generalized easily to the
case of N strips of disks embedded in a layered medium as
shown in Fig. 4. It can also be generalized to study the
scattering of a slot or an aperture. We have done these in
[26].

1V. CONCLUSIONS

We have developed a new notation, together with vector
Fourier transforms, which can be used for studying the
scattering of waves from strips or disks. This new notation
allows us to write complicated expressions compactly and
yet not obscure the underlying physics of the problems.
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We have used the new notation to derive and describe
reflection and transmission operators for certain complex
scattering problems by strips or disks. We first derived the
reflection and transmission operators for a single disk or
strip. Then we generalized it to the case of deriving the
reflection operator of a single strip or disk on top of a
reflecting medium. We discussed how the case of N strips
or disks in a homogeneous medium can be computed using
such a formalism. We next discussed how the reflection
operator of an embedded strip or disk can be similarly
derived. The result can be generalized to the case of
scattering from N embedded strips or disks [26], which
may find applications in high-speed circuitry in computer
technology or in calculating the radar scattering cross
section of frequency-selective surfaces. All our reflection
and transmission operators thus derived are computable.
They can be physically interpreted and hence used to
elucidate the underlying scattering processes.

APPENDIX

A. Reflection and Transmission Operators for a Layered
Medium

When we have a source in medium 1 as shown in Fig. 2,
we can write down the expression for the field in region 1
as in (43a), viz.,

E (r)=F(r): (e”r‘f"‘z" + e éu : e""‘f"): g, :J,,
z>0 (A1)

where %,, is the generalized reflection operator including
subsurface reflections. The field in region 2 can be written
as

E, (r)=F(r): (e"fkl + !Xzt h) 5;23 : eiflzhz) A4,
(A2)

where %,, is a generalized reflection operator including
subsurface reflections. We have required that the upgoing
wave be related to the downgoing wave in region 2 by the
reflection operator #,,. A, is the amplitude of the down-
going wave in region 2. However, we know that the down-
going wave in region 2 is a consequence of a transmission
of the downgoing wave in region 1 plus the reflection of
the upgoing wave in region 2. Therefore,

A, =Ty, G T+ Ry Ry M0 4, (A3)

where J,, and #,, are local transmission and reflection
operators for the single interface at z = 0. In the above, we
have made use of the fact that all the operators are
diagonal, and hence act like scalars and commute with
each other. Solving for 4,, we have

A,= (9’— Ry 9_723 : eiZJ("Z:hz)_

Vo
1T, e g T
(A4)

Since all the operators are diagonal, the inverse in (A4) is
easily sought.
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The upgoing wave in region 1 is a consequence of the
reflection of the downgoing wave in region 1 plus a trans-
mission of the upgoing wave in region 2. Consequently, we
deduce that

éu =R+ Ty ek Ry,
- — =~ -1 _
:(f — Ry - Ry e'“’“"l) 19, (AS)

The above forms a recursive relationship between the

generalized reflection operators %, and %,,. We can use
this relationship recursively until we reach the bottommost
layer, where the reflection operator is zero. Hence, the
generalized reflection operator for each region can be
found.

Also, from (A4), the amplitude of the downgoing wave
in region i is related, in general, to the amplitude of the
downgoing wave in region i —1 by the relationship,

A= (F =R Rie

ii—

-1
ilﬁﬁzhf)

iXi:hior. 4 L
i1

i—1,i .e (A6)
Equations (A5) and (A6) allow us to find the field ampli-
tude everywhere given a source in region 1. Equation (A6),
when used recursively, allows us to relate the downgoing
wave in region j given that we know the downgoing wave
in region i, where i < j and regions i and j are both below
the source. Hence, we can define a generalized transmis-
sion operator .7_: ; which transmits a downgoing wave
from region i to region j. From (A6), it is given by

-1
z . . L i2H 0 h
(] R k-1 Prys1:€77% *)

.

k=i+1

..wh

:.7—;‘_1‘,‘ e Hi-1 i (A’])

With this definition, 4, =7, : 4,. Note that if the layered
medium had been above the source, we could still derive
generalized reflection and transmission operators. The
transmission operator in this case relates the upgoing wave
in one region to the upgoing wave in another region.

We have derived the generalized reflection and transmis-
sion operators in terms of the local reflection and trans-
mission operators. The local reflection operator £,; is a
representation of the reflection matrix R,;, which is re-
lated to the Fresnel reflection coefficients, i.e.,

= |- RIM 0 (A8)
N 0 RT
where
('kiz—eik iz AU“kzz_ k jz
3 ALICAT Y I ¢ ettt B PN
(jkiz""ika I‘jkiz"‘#ik,‘z

1

similar to that of [27], but not identical.

In the above J;,=.f + %, The above derivation is
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B. Field Due 1o an Embedded Strip
When a strip is embedded in region j as shown in Fig.
4, we can write the field in region j as

E, (r)=F(r): (e'“r/‘z"’zl' + ) Y @)

—iH (2=dI) . Gy - i KA -2 g - T
+ e itz ,1)_91_81 e (d] zj))_gj_.]js. (A9)

Y ' and Qj would be zero if there were no layered media
above and below the strip. To find %; and 2;, we use the
fact that at z=d/_; the upgoing wave and the downgoing
wave are related by thé generalized reflection operator

Q?j,jﬁl, or
P, e XD =R, (eu’,zu;«z,»)

+eh e’yﬂ“f‘d/)). (A10a)
Similarly, at z=d;, we have

o;j < itz —d)) = gj_ i :(é,-fﬂ(zj_d/)

+ ik G e 4a3)). (A10b)

We can solve (Al10a) and (A10b) for u 7 and éj. Finally,
we have

;e = (i— 17

NI R

-1

Jad—

Qn

Jrjt+l

Huz=d))

—_—
o

+e Mt R e"’"ﬂ(dffl'zf)) (Alla)

= . ikdia—z) | F .
D, e ZJ)_(j_‘g?j,j+1‘

~ -1
7 . i 2h
G,y et

!(eif!z(d//—l_ll)
+e M R, Ly e"‘ffz(zf_d’))- (A11b)

Once %  and 7] ; are found, the upgoing and downgoing
waves in region j are known. Then we can find the
generalized reflection and transmission operators in each
region using the method described in the previous section.
Using them, we can propagate the upgoing wave in region
j upward, and the downgoing wave in region j downward
and find the field everywhere.
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