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Recursive T-Matrix Algorithms for the 
Solution of Electromagnetic Scattering 

from Strip and Patch Geometries 
Levent Gurel, Member, IEEE, and Weng Cho Chew, Fellow, IEEE 

Abstruct- Two recursive T-matrix algorithms (RTMA’s) are 
presented and their reduced computational complexities and 
reduced memory requirements are demonstrated. These algo- 
rithms are applied to the problem of electromagnetic scattering 
from conducting strip and patch geometries. For a systematic 
development, canonical geometries of strips and patches are 
chosen. These geometries are reminiscent of finite-sized fre- 
quency selective surfaces (FSS’s). Computational complexities 
of O(N’) and O ( N 7 / 3 )  and memory requirements of O ( X )  
and O(N4l3)  are shown to be feasible for two-dimensional 
and three-dimensional geometries, respectively. The formula- 
tion uses only two components of the electric field. Therefore, 
the vector electromagnetic problem of scattering from three- 
dimensional patch geometries can be solved using scalar-rather 
than vector-addition theorems for spherical harmonic wave 
functions. For a two-dimensional strip problem, both TM and TE 
polarizations can be solved simultaneously using this formulation. 
Numerical scattering results are presented in the form of radar 
cross sections (RCS’s) and validated by comparison with the 
method of moments (MOM). 

I. INTRODUCTION 

WO efficient and fast algorithms for the numerical solu- T tion of the integral-equation formulations of the electro- 
magnetic scattering problems will be presented in this paper. 
These are the recursive T-matrix algorithm (RTMA) and the 
recursive aggregate T-matrix algorithm (RATMA), which will 
be collectively referred to as the recursive T-matrix algorithms 
(RTMA’s) [1]-[12]. The RTMA’s will be applied to canonical 
representatives of a class of geometries that contain conducting 
strips and patches. 

Several important classes of problems in computational 
electromagnetics (including those that are of interest in this 
paper) can be formulated using integral equations (IE) and 
solved by matrix solvers, e.g., Gaussian elimination, after 
converting the integral equations to matrix equations, e.g., 
via method of moments (MOM). Such a solution scheme 
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(henceforth referred to as IE-MOM) is powerful and general 
since 

1) it is flexible, and it can easily be formulated and imple- 

2) it is valid for all excitations or incident waves (multiple 

3 )  it is also applicable to eigenvalue problems, and 
4) it incorporates the radiation condition and, therefore, can 

handle geometries radiating or scattering into unbounded 
regions as well as geometries in bounded regions. 

A problem comprising N unknowns requires O ( N 3 )  op- 
erations and O ( N 2 )  memory locations with this type of a 
solution. Other formulation schemes (e.g., the finite-element 
method) and solution techniques (e.g., the conjugate-gradient 
algorithm) with lower computational complexities and mem- 
ory requirements are possible, but they are not as general as 
the integral-equation formulation outlined above. 

Despite all of the advantages of IE-MOM, its O ( N 3 )  compu- 
tational complexity and 0 ( N 2 )  memory requirement exhaust 
computational resources before larger and more interesting 
problems can be solved. A general solution scheme with 
reduced computational complexity and memory requirement 
is essential for problems comprising very large numbers of 
unknowns [33]-[41]. 

As a partial solution to the computational-complexity and 
the memory-requirement problems referred to above, two 
recursive T-matrix algorithms will be presented in this paper. 
It will be shown that these algorithms have less than O ( N 3 )  
computational complexities and less than O ( N 2 )  memory 
requirements for some classes of geometries. 

mented, 

“right-hand sides”), 

11. CANONICAL GEOMETRIES 

Canonical geometries of strips and patches are shown in 
Figs. 1 and 2. Illustrated in parts (a) and (b) of Fig. 1 are 
the one-dimensional and two-dimensional clusterings of strips. 
Similarly, (a) and (b) of Fig. 2 display the two-dimensional 
and three-dimensional clusterings of patches. In this paper, 
we will apply the RTMA’s to these geometries. Canonical 
problems are important since they display the performances 
of the solution techniques on the class of geometries they are 
representing, without having to apply the solution technique 
under test to each member geometry of the class. The canonical 
problems illustrated in Figs. 1 and 2 are also important on their 
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Rg+(r) is the “regular part” of +(r), i.e., Rg+(r) contains 
standing harmonic wave functions‘. 

T matrices, which relate the scattered-field coefficients to 
the incident-field coefficients, are defined for each scatterer 
via the relation 

X so that the scattered field can be expressed in terms of these 
(b) T matrices, i.e., 

Fig. 1. Canonical problems for strips: (a) one-dimensional clustering of 
strips; (b) two-dimensional clustering of strips. A. 

E:(.) = gt(r;) . T;(N)  . . e .  (4) 

(b) 

patches; (b) three-dimensional clustering of patches. 
Fig. 2. Canonical problems for patches: (a) two-dimensional clustering of 

own account since they or a slight modification thereof can be 
considered as finite-size frequency-selective surfaces. 

111. ALGORITHMS 

The x and y components of the electric field will be used 
to represent the electromagnetic fields. For a two-dimensional 
strip problem, the z and y components represent the TE (to 
y) and TM (to y) cases, respectively. Following the standard 
T-matrix notation [ 141-[32],[ 11-4 121, the incident field can be 
expressed as 

= R g F  (r) . e 

and the scattered field as 

2=1 

In the above, one T matrix is defined for each scatterer, i.e., 
the subscript i denotes the zth scatterer. The parenthesized N 
in the subscript is an “environment parameter,” which denotes 
the presence of N scatterers in the geometry when is 
defined. The translation matrices pZJ (and E,,)  [1]-[13] are 
obtained using scalar addition theorems for either spherical 
or cylindrical harmonic wave functions. This formulation 
enables one to avoid the more cumbersome vector addition 
theorems for the three-dimensional patch problems and to use 
the considerably fast recurrence-relation computation of the 
three-dimensional scalar addition theorem [ 131. 

In the presence of N scatterers (or subscatterers), the T 
matrices T 2 ( ~ )  .&I for z = 1, . . . . N can be computed from the 
( N  - 1)-scatterer T matrices (Tz(N-l) z = 1, . . . . N - 1) 
using the recursive relations [3],[5] 

- 

/ N-1 \ -l 

Equations (5) and (6) together constitute the recursive T-matrix 

By using the definition of the aggregate T matrix [4],[5] 
(1) algorithm (RTMA). 

N 

2 = 1  

in (5) and (6), one can convert the RTMA to another recursive 
algorithm to compute the N-scatterer aggregate T matrix, 
T ( ~ ) ,  from the ( N  - 1)-scatterer aggregate T matrix, ‘(N-~) .  
This algorithm is called the recursive aggregate-T-matrix 

= CSt(r2) . f; (2) 
- 

where +(r) is a column vector containing outgoing scalar 

dimensional (two-dimensional) patch (strip) problem and 1121. 
’pherical (cy1indrica1) wave functions in a three- ‘Explicit expressions for the +(r)  and %g+(r) vectors are given elsewhere 
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algorithm (RATMA) and is given by 

- 
T(" = T(N-1) + PON ' % ( N )  . PNO 

- + T(Al-1) . -UOiV ' T N ( N )  . PNO ' (9) 

For brevity, we have not included the derivations of the 
RTMA's here. A variety derivations can be found elsewhere 

1 I-[ 1 O H  121 

IV. COMPUTATIONAL COMPLEXITIES 
AND MEMORY REQUIREMENTS 

As shown earlier [ 11-[ 121, the addition theorems, which 
involve infinite summations in principle, can be truncated to 
P terms within a specified error t. There exists a P for every 
F and P increases as t decreases. Furthermore, if one keeps M 
terms in the multipole expansion of (2), then the sizes of the 
T matrices, T 2 ( ~ )  . become M x P.  Similarly, the sizes 
of the aggregate T matrices, T ( N ) ,  are P x P. 

At an intermediate step of the RTMA, the n-scatterer T 
matrices can be computed from the knowledge of the (n - 1)- 
scatterer T matrices by going once through ( 5 )  and (6). By 
counting the number of operations required to do this, it is 
observed that the computational complexity of this single step 
is O ( M 3  +7Af2P) .  For an N-scatterer problem, this step has 
to be repeated N times. Then, the computational complexity 
of the whole algorithm is found to be O ( N M 3  + N 2 M 2 P ) ,  
where N is the total number of unknowns in the problem, 
M is the number of harmonics used to expand the scattered 
field of each scatterer, and P is the number of terms kept 
in the truncated addition theorems that are used to translate 
the coordinate system of one scatterer to that of another. M ,  
which depends only on the size of the subscatterers, can be 
kept constant at a value that satisfies the convergence criteria 
for every scatterer in the problem. Then, the computational 
complexity of the T-matrix algorithm can be expressed as 
O( N 2  P) .  

Similarly, the number of operations required at the nth step 
of the RATMA given by (8) and (9) is O ( M 3  + M P 2 ) .  
For an N-scatterer problem, the RATMA has the overall 
complexity O ( N M 3  + N M P 2 ) .  Again, M can be kept 
constant throughout the problem, and the expression for the 
computational complexity reduces to O ( N P 2 ) .  

In the RTMA solution of an N-scatterer problem, one needs 
to store N number of T matrices of size M x P. Thus, the 
memory requirement of the RTMA is O ( N P ) .  On the other 
hand, the dominant memory requirement in the RATMA is 
due to a single P x P aggregate T matrix. Thus, the memory 
requirement of the RATMA is O ( P 2 ) .  

Finding the dependence of P on N is imperative for 
evaluating the performance of the RTMA's. From a simple 
argument, it follows that the number of terms in the addition 
theorems, P ,  asymptotically becomes linearly dependent on 
the magnitudes of the arguments of the Bessel functions [7]. 

TABLE I 
COMPUTATIONAL COMPEXITIES AND MEMORY REQUIREMENTS OF THE 

RTMA's FOR DIFFERENT CLUSTERINCS OF TWO-DIMENSIONAL SCATTERERS 

Algorithm 

RTMA RATMA 
Dimension of Clustering 

(a) Computational Complexity 

O(A\j'P) O( NP' ) 

O( 4 3  ) O ( N 3 )  

Generic Computational 
Complexity 

One-Dimensional Clustering 
( P  0: N )  

0 ( *\-s /' ) Two-Dimensional Clustering 
IP cx NI/'\ 0 ( W )  

(b) Memory Requirement 

O(.VP) O ( P 2 )  

O(:\T2) 0 ( .v2 ) 

0 ( p / 2 ) O ( N )  

Generic Memory 
Requirement 

One-Dimensional Clustering 

Two-Dimensional Clustering 
( P  o( N I / ' )  

( P  3: N )  

TABLE I1 
COMPUTATIONAL COMPLEXITIES AND MEMORY REQUIREMENTS OF THE RTMA'S 

FOR DIFFERENT CLUSTERINGS OF THREE-DIMENSIONAL SCATTERERS 

Algorithm 

RTMA RATMA 
Dimension of Clustering 

(a) Computational Complexity 

O(*V'P) O( N P' ) 

0 ( NJ ) O(*V3) 

0 ( P 1 ) 0 ( 3 7 / 3 )  

Generic Computational 
Complexity 

Two-Dimensional Clustering 
( P  rx N )  

Three-Dimensional 
Clustering ( P  0: P/") 

(b) Memory Requirement 

O(:VP) 0 ( P 2 )  

O( s' ) O(.V) 

Generic Memory 
Requirement 

Two-Dimensional Clustering 
( P  rx N) 

0 ( N" / 3 ) 0 ( N 4 / 3  ) 
Three-Dimensional 

Clustering ( P  cc 

Since the largest magnitude of the arguments, d,,,, is the 
largest dimension of the geometry under consideration, we 
arrive at 

P x d",,,, o: 5 1 for cylindrical harmonics (loa) 

fi 0: d",,,, a I 1 for spherical harmonics. (lob) 

For large values of d,,, and P, it is found that a approaches 
unity. In the rest of the analysis, assuming that the worst case 
holds, one can safely let 
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Fig. 3. RCS plots due to the 7 x 7 array configuration of two-dimensional Clustering of patches as in Fig. 2(a): (a) TE case 
on the 4 = 0 cut, (b) TE case on the 4 = $ cut, (c) TE case on the 6' = $ cut, (d) TM case on the p = 0 cut, (e) TM 
case on the 4 = $ cut, (f) TM case on the 6' = $ cut. 

For different clusterings of the scatterers, d,,, has a dif- 
ferent dependence on N .  We will investigate the types of 
clusterings illustrated in Figs. 1 and 2, namely, 

1) one-dimensional clustering of two-dimensional scatter- 

2) two-dimensional clustering of two-dimensional scatter- 

3) two-dimensional clustering of three-dimensional scatter- 

4) three-dimensional clustering of three-dimensional scat- 

ers [Fig. l(b)], 

ers [Fig. 2(a>], 
ers [Fig. l(a)], 
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270' 
(e)  (f) 

Fig. 4. RCS plots due to the 3 x 3 x 3 array configuration of three-dimensional clustering of patches as in Fig. 2(b): (a) TE 
case on the 4 = 0 cut, (b) TE case on the 4 = 5 cut, (c) TE case on the 0 = 5 cut, (d) TM case on the 4 = 0 cut, (e) 
TM case on the I$ = 5 cut, (f') TM case on the 6' = 5 cut. 

terers [Fig. 2(b)]. dmax 0: N for one-dimensional clustering, (1 la) 
Considering the three possible clustering schemes, one can 
easily determine how the largest dimension of the geometry 

d,,, cc N112 for two-dimensional clustering, (1 lb) 

depends on the number of scatterers: d,,, 0: N113 for three-dimensional clustering. (1 IC) 
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Fig. 5. Comparison of the CPU times required by the application of the MOM 
and the RTMA to the one-dimensional clusterings of strips as in Fig. l(a). 

Finally, (10) can be combined with (1 1) to determine the 

1) P K N for one-dimensional clustering of two- 

2) P K N1/2 for two-dimensional clustering of two- 

3) Jl" 0: N1/2 for two-dimensional clustering of three- 

4) 0 0: N1/3 for three-dimensional clustering of three- 

Tables I and I1 display the computational complexities 
and the memory requirements of both the RTMA and the 
RATMA for different clusterings of two-dimensional and 
three-dimensional scatterers. It is observed that O ( N 2 )  and 
O ( N 7 / 3 )  computational complexities and O ( N )  and O(N4l3) 
memory requirements are possible for two-dimensional and 
three-dimensional scatterers, respectively. It is also observed 
that the denser the scatterers are clustered, the smaller the 
number of operations required by the RTMA's. 

Note that the RTMA yields a full solution valid for all angles 
of incident waves. Comparisons with the performances of the 
conjugate-gradient algorithms that have reduced computational 
complexity will not be fair since they yield solutions valid for 
only one given incident wave. 

dependence of P on N 

dimensional scatterers, 

dimensional scatterers, 

dimensional scatterers, 

dimensional scatterers. 

V. RESULTS 
We have applied the RTMA's to the canonical strip and 

patch geometries of Figs. 1 and 2. Some of these geometries 
violate the restrictions [ 121 that are inherently imposed by 
the RTMA's presented in this paper; in that case, we have 
used one of the two techniques [8]-[10],[12] developed to 
lift these restrictions. In this section, we will present results 
for the two-dimensional and three-dimensional clusterings of 
patches. Results for the one-dimensional and two-dimensional 
clusterings of strips were given elsewhere [7]-[ 121. 

Consider a plane wave, either TM or TE polarized, incident 
on an array of 7 x 7 conducting patches at 4 = 0 and 6' = 45" 
as illustrated in Fig. 2(a). There are a total of 49 identical 
square patches with size kw = 1.0 and spacing k d  = 2.0 in 

1 i n  100 loo0 
". 1 

Number of Unknowns (3xStrips) 

Fig. 6.  Comparison of the CPU times required by the application of the 
MOM, the RTMA and the RATMA to the two-dimensional clusterings of 
strips as in Fig. l(b). 

both the 17: and y directions. Fig. 3(a)-(f) show the normalized 
RCS plots (on a logarithmic scale) on the 4 = 0, 4 = ;, 
and 6' = 2 cuts, i.e., the x-z ,  y-z, and, 2-y planes. Results 
obtained using the method of moments (MOM), the R W A ,  
and the RATMA for both the TE and Th4 cases are presented 
in these figures. Note that the three methods agree very well 
on all of the cuts and for both polarizations. 

Next, consider a three-dimensional clustering of patches. 
We will investigate the 3 x 3 x 3 patch geometry. A plane 
wave, either Th4 or TE polarized, is incident on the structure 
at 4 = 0 and 6' = 45". The patches are identical and square in 
shape with size kw = 1.0 and spacing kd = 2.0 in all of the 2, 

y, and z directions. The results presented in Fig. 4(a)-(f) for 
this 27-patch geometry also display good agreement between 
the MOM and the RTMA's. 

VI. PERFORMANCE OF THE RTMA'S 

A theoretical analysis of the computational complexities of 
the RTMA's was given earlier in this paper. Tables I and 
I1 display the complexities of the RTMA's when applied to 
two-dimensional and three-dimensional scatterers clustered in 
different dimensions. In this section, we will report the actual 
times that the computer programs based on the RTMA's take 
to run on a single central processing unit (CPU). 

Figs. 5-8 display the CPU times taken by different computer 
programs based on the MOM, the RTMA, and the RATMA. 
In all of these figures, both the vertical and the horizontal 
axes are logarithmically scaled; therefore, the slope of a curve 
is equal to the order of the computational complexity of the 
corresponding algorithm. 

Fig. 5 shows the CPU times taken by two programs based on 
the MOM and the RTMA when applied to the one-dimensional 
clusterings of strips [see Fig. l(a)]. The slope of the RTMA 
is seen to be equal to that of MOM for large N (number of 
strips or number of unknowns). This observation agrees with 
the theoretical prediction of O( N 3 )  computational complexity 
for the application of the RTMA to the one-dimensional 
clusterings of strips [see Table I, part (a)]. 
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Fig. 7. Comparisons of the CPU times required by the applications of the MOM, the RTMA and the RATMA to the 

twdimensional clusterings of patches as in Fig. 2(a). 

Fig. 6 compares the CPU times taken by the MOM, the 
RTMA and the RATMA when applied to the two-dimensional 
clusterings of strips as in Fig. l(b). It is observed that, 
for large N ,  the RATMA has the smallest slope, and the 
MOM has the largest slope. This finding also agrees with the 
theoretical predictions of Table I, part (a), in which the RTMA 
and the RATMA are shown to have O(N512)  and O ( N 2 )  
computational complexities, respectively. 

In Fig. 7, we present, in addition to the total CPU times 
taken by the MOM, the RTMA, and the RATMA when applied 
to the two-dimensional clusterings of patches [see Fig. 2(a)], 
the breakdown of the total CPU times into the matrix-filling 
times and actual matrix-solution times. The matrix-solution 
times for the MOM, the RTMA, and the RATMA have the 
same slopes for large N .  This is in agreement with the 
predictions of Table 11, part (a), where both the RTMA 
and the RATMA are shown to have O ( N 3 )  computational 
complexities, respectively. 

Finally, in Fig. 8, we present the matrix-solution times, 
the matrix-fill times, and the total times required by the 
applications of the MOM, the RTMA, and the RATMA to the 
three-dimensional clustering of patches [see Fig. 2(b)]. We 
observe that, for large N ,  the RATMA has the smallest slope, 
whereas the MOM has the largest slope in the matrix-solution 
times. This finding agrees with the theoretical predictions 
of Table 11, part (a), in which the RTMA and the RATMA 
are shown to have O(N813) and O(N713) computational 
complexities, respectively. The order of the slopes for the 
matrix-fill times is just the reverse, i.e., the RATMA has the 
largest slope, and the MOM has the smallest slope. However, 
for larger N ,  the matrix-solution time will be more dominant 
than the matrix-fill time. Indeed, Fig. 8 shows that the total 
CPU time of the RATMA is starting to be dominated by the 
matrix-solution time at the last data point ( N  = 200), whereas 
the total times of the MOM and RTMA are still dominated by 
the matrix-fill time. 
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Fig. 8. Comparisons of the CPU times required by the applications of the MOM, the RTMA and the RATMA to the 

three-dimensional clusterings of patches as in Fig. 2(b). 

VII. CONCLUSIONS 

We have presented the applications of the RTMA and the 
RATMA to canonical strip and patch geometries. Compu- 
tational complexities of O ( N 2 )  and O ( N 7 / 3 )  and memory 
requirements of O ( N )  and O ( I V ~ / ~ )  have been shown to be 
feasible for two-dimensional and three-dimensional geome- 
tries, respectively. We have applied these algorithms to elec- 
tromagnetic scattering problems. They can also be extended 
to other wave-scattering problems, and even to problems in 
other disciplines. When solving the electromagnetic scattering 
problem, these algorithms give the full-wave solution with- 
out having to make any approximations on the fundamental 
equations and the boundary conditions. Being computational 
algorithms, they give the numerically approximate solution of 
the exact electromagnetic formulation. These algorithms also 
give the solution for all possible incident waves or “right- 
hand sides” at once, a feature that is not shared by some other 
fast solution techniques such as the conjugate-gradient method. 

Furthermore, as opposed to some other formulation schemes 
such as the finite-element method, these algorithms naturally 
incorporate the radiation condition at infinity; therefore, they 
can handle geometries in unbounded media. The formulation 
presented in this paper for patch problems uses scalar-instead 
of vector-addition theorems for spherical harmonic wave 
functions. 
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