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I. INTRODUCTION 
This  paper forms a connection  between the  two (of the several) major numerical  tech- 

niques of computational electromagnetics. These  are  the  T-matrix  methods (TMM) [I] and 
the surface- or volume-integrd-equation (IE) methods.  Both homogeneous  (e&, guidance, 
resonance) and inhomogeneous (e.g., scattering)  equations can be solved with  these two 
methods. In a scattering problem, for example, the  immediate  product of a TMM is the 
T matrix of the  scatterer, from  which the  scattered field  can he  computed, Le., 

TMM =+ T Matrix ==+ Scattered Field. (1) 
For the  same problem, the  immediate  product of an IE method would be some current 
distribution (surface or volume, physical  or  fictitious), from which the  scattered field can 
be  computed, ;.e., 

IE j Current  Distribution a Scattered Field. (2) 
In this paper, we will show  how to obtain a TMM solution  from an IE solution, i.e., 

IE a Current  Distribution a T Matrix ( =+ Scattered Field ), (3) 
and vice versa, Le., 

TMM T Matrix  Current  Distribution ( Scattered Field ). (4 1 
Although both of the methods have  long histories, the idea of bridging the two has  not 

either (1) or (2). Since (l), (2), (3), and ( 4 )  all give the  scattered field as the  end-product, 
attracted much attention since i t  would be redundant to  do (3) or (4) instead of doing 

is there a r w n  for  prefering (3) or (4) over (1) or (2)? 

The answer to  the above question is affirmative if one employs a recursive T-matrix al- 
gorithm 121, [3] as opposed to  a conventional TMM [I]. The recursive T-matrix algorithms 
can  handle  multiple scatterers  or a single scatterer divided into  multiple subscatterers. 
These  algorithms  require the knowledge of individual  T  matrices of subscatters, which can 
he  obtained  either by  using a conventional TMM that employs extended  boundary con- 
ditions (EBCs) [I] or  by using (3). Once these individual T-matrices  are  computed,  the 
recursive T-matrix algorithms  combine them to compute  the T matrix of the whole  geom- 
etry.  Depending on the geometry, this can be achieved in less than O ( N 3 )  operations [3]. 

The use of (3) is best appreciated when the individual T matrix of a particular sub- 
scatterer is difficult, complicated, or simply  impossible to  compute using a conventional 
TMM that employs EBCs [I]. One example is the case of an infinitely thin conducting 
subscatterer, like a conducting strip  or  patch [3] (see Section 11) since the wave functions 
are singular on  the surfaces of the  scatterers. On the  other  hand, (4) is useful  when one 
desires to  compute  the  current  distribution at the end of a recursive T-matrix algorithm 
(see Section 111). Due to  the lack of space, we will only  consider strip problems employing 
surface IEs in  the rest of this  paper, however, extensions  for other IEs should be obvious. 
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11. THE T MATRIX OF A S I N G L E  STRIP 

We will first  formulate the single strip problem using the concepts of surface IEs and 
method of moments (MOM), and  later  extract  the T matrix for a single scatterer. Recently, 
van  den Berg [4] considered similar ideas,  however, we will give a more general  formulation. 

If .7iP(zi) = bf,(zi) * is the unknown current distribution on the  ith isolated 
strip, where bj,(zi) is a row vector of arbitrary basis  functions, and p denotes different 
polarizations, then  the  scattered field is given by [31 

E i ( p i )  = dzl Gpp(k lp i  - izll)biP(zI) -aip(l) . I (5) 
The Green's function, Gpp, can be  expanded  in terms of vectors of cylindrical wave functions, 
(bp, and  their regular parts, 8?gdp, to  obtain 

-$(Pi) = d : ( k P i ) .  /dz: .Cp8&(k:)bfp(z:) 'aip(1) (6) 
b " 

- P P  
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where Lp is a polarization-dependent differential operator [3]. In a T-matrix formalism, the 
scattered field  is  given by [2] 

E,S(P;) = +i(kpi) *T7:) .ep (7) 

where TI) is the T matrix for the ith isolated strip, p:, is a coordinate-translation  matrix, 
and eP is a coefficient  vector for the incident field. From (6) and (7), we find that 

ai,(]) can be solved in terms of ep by using a MOM formalism to obtain [3] 

-PP 
Sii 

+P 
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where t,,(zi) is a vector of arbitrary  testing functions.  Combining (8) and (9), we have 

-PP Ti(l) = -E: I (q;)-' . F:, 
(10) 

Once the T matrix for a single strip is computed,  one can  use it in the recursive algorithms 
121, [3] and solve the problem of total  scattering from N strips in  less than O(,V3) operations. 

111. CURRENT DISTRIBVTIOWS ON THE STRIPS 
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in a T-matrix formalism. In order to compute the current distributions on the  strips,  one 
needs to find the excitation coefficients, aidlv) for all i. Then, bl,(r,). ~ 4 . d ~ )  gives the 
current distribution on  the ith strip  in  the presence of N - 1 other strips. A derivation 
similar to  that  given in the previous  section  results in [3] 

The  matrix @: is an M x N‘ matrix where M is the number of harmonics used for the  ith 
strip  and N’ is the number of basis  functions  defined on the  ith  strip.  Although q: is  not 
square, its inverse  can  stin be found  via  either  a  least-squares  solution  or a singular-value- 
decomposition  process t o  obtain a Moore-Penrose generalized inverse  (pseudoinverse) [SI. 

We have  applied the recursive T-matrix  dgorithms to the electromagnetic  problem of 
scattering  from  ten  strips of width w and  spacing d = 2w. (see Fig. 1) This is a two  
dimensional  geometry for a onedimensional finite-size  frequency  selective  surface.  Both 
TM (to I) and  TE  (toy) polarized  incident  plane waves have been considered.  Figures 2(a) 
t o  2(e) show the  magnitude  and  the  phase of the longitudinal current  distributions  on  the ten 
strips for the TM case at five different  frequencies  corresponding to  ks = 1.0,2.0,. . . , 5.0. 
Similarly, Figs. 3(a) to  3(e) show the transverse  current  distributions  for the  TE case at the 
same frequencies.  These  results are checked against MOM results  with excellent agreements. 
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Fig. 1. TM or TE plane wave incident  on a finite-size 
frequency  selective  surface of ten strips. 
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