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1 Introduction

Our motivation in developing fast direct (noniterative) algorithms for the solution
of planar and quasi-planar geometries is based on the following observations:

e Fast iterative techniques [1-6), which have remarkable performances in solv-
ing large problems, are suffering from slow convergence or stagnation for res-
onant and near-resonant structures, examples of which are shown in Fig. 1.

e Conventional direct solvers, such as the Gaussian elimination, have O(N?®)
complexity, which is too high for the solution of large problems.

Figure 1: Examples of resonant structures: (a) planar microstrip geometry,
(b) quasi-planar cavity geometry.

Our recent work on recursive T-matrix algorithms (RTMAs) resulted in nonit-
erative solvers with reduced complexities [7-11]. However, the following problems
remained open:

e Although RTMAs did reduce the complexity for “dense” geometries, similar
reductions were not obtained for 2D and 3D planar geometries [11].

e Geometries involving layered media could not be solved using RTMAs.

Both of the above problems are overcome by combining RTMAs with another
technique, namely, the steepest descent path (SDP) integration [12,13].
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2 Steepest Descent Path (SDP) Formulation

The 3D Green’s function (GF) for a homogeneous medium is given by
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The path of the above integral can be deformed to the SDP and the resulting
integral can be discretized to obtain
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Since the 3D GF can be expressed as a sum of a number of 2D GFs, the 3D
problem can be solved by solving the same number of 2D problems. Note that the
equivalent 2D problems involve “dense” geometries in 2D, making the recursive

aggregate-T-matrix algorithm (RATMA) [7] a suitable candidate for a fast 2D
solver.

For quasi-planar geometries, |z — 2’| remains small for all interactions between
pairs of subscatterers, whereas |z — 2’| = 0 for planar geometries. The above
formulation can be extended to the layered geometries since the spectral-domain
GF is readily available to be used in Egs. (1) and (2). A symmetrized form of the
spectral-domain dyadic GF derived by Chew [14] can be used for this purpose [15].
Special attention should be given to the branch-point and pole contributions when
deforming the integration path to the SDP. A similar algorithm for the solution of
2D planar geometries was earlier developed by Chew and Lu [16,17).

RATMA was shown to have a computational complexity of O(NP?) [7,11] and
P was shown to scale as O(+v/N log N) for the SDP formulation of 3D planar ge-
ometries [12,13]. Thus, the overall computational complexity of the fast direct
algorithm based on the SDP (FDA/SDP) becomes O(N?log? N), which is signifi-
cantly lower than O(N?®).
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Figure 2: Geometry of a 10 x 10 array of 100 conducting square patches with
dimensions kw = 1.0 and spacing kd = 2.0.

3 Results

Figure 2 shows a 10 x 10 array of 100 conducting square patches with dimensions
kw = 1.0 and spacing kd = 2.0. Clearly, FDA/SDP is not limited to and does not
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take advantage of periodic, planar, and canonical geometries involving identical
patches. This canonical geometry is chosen merely bhecause of the ease of repro-
ducibility and comparison of the results. Figures 3(a) and (b) show the comparison
of TE and TM scattered fields, respectively, as computed by the method of mo-
ments (MOM) and FDA/SDP of this paper. For both polarizations, the agreement
between the two techniques is very good for the top 20-30 dB of the results. For
lower values of RCS, occasional disagreements are observed. This problem is due
to the fact that the geometry in Fig. 2 violates the addition theorems of harmonics
even though the generalized RATMA (8] is used in this work. This situation can
also be remedied by using windowed addition theorems [9]. A better remedy is to
use the novel direct algorithms [18,19] that completely bypass this problem.
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Figure 3: RCS of the two A x A conducting patches (as shown in Fig. 2) on the
z-y plane for various patch separations: (a) TE and (b) TM polarized RCS curves
for the array geometry shown in Fig. 2. Plane waves with TE and TM polarized
electric fields are incident on the patches at § = 45° and ¢ = 0°. (¢) Comparison
of the CPU times required for various noniterative solution algorithms.

Finally, Fig. 3(c) shows a comparison of the solution times of FDA/SDP, MOM,
and RATMA. FDA/SDP solution times are seen to increase with a smaller slope
than those of MOM and RATMA, confirming the reduced computational com-
plexity of FDA/SDP. The solution times presented in Fig. 3(c) are obtained by
solving the scattering problems of increasingly larger planar arrays of patches, as
shown in Fig. 2, without taking advantage of the periodicities and the symmetries
of these arrays. RATMA was predicted and demonstrated to have O(N?) com-
plexity for such 2D clustering of 3D scatterers [11]. On the other hand, FDA/SDP
employs RATMA to solve 2D problems to take advantage of RATMA’s reduced
computational complexity for 2D clustering of 2D scatterers [11].
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