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Abstract— We report the solution of the largest integral-
equation problems in computational electromagnetics. We con-
sider matrix equations obtained from the discretization of the
integral-equation formulations that are solved iteratively by
employing parallel multilevel fast multipole algorithm (MLFMA).
With the efficient parallelization of MLFMA, scattering and
radiation problems with millions of unknowns are easily solved on
relatively inexpensive computational platforms. For the iterative
solutions of the matrix equations, we are able to obtain acceler-
ated convergence even for ill-conditioned matrix equations using
advanced preconditioning schemes, such as nested precondition-
ers based on an approximate MLFMA. By orchestrating these
diverse activities, we have been able to solve a closed geometry
formulated with the CFIE containing 33 millions of unknowns
and an open geometry formulated with the EFIE containing 12
millions of unknowns, which are the largest problems of their
classes, to the best of our knowledge.

Index Terms— Electromagnetic scattering, surface integral
equations, iterative methods, multilevel fast multipole algorithm,
parallelization, preconditioning techniques, metamaterials.

I. INTRODUCTION

For the numerical solutions of the scattering and radiation
problems in electromagnetics, integral-equation formulations
provide accurate results when they are discretized appropri-
ately by using small elements with respect to wavelength.
For perfectly conducting geometries, combined-field integral
equation (CFIE) is commonly used for closed surfaces. For
open surfaces, however, electric-field integral equation (EFIE)
is used to properly formulate the problems. With the simulta-
neous discretization of the scatterer and the integral equations,
dense matrix equations are obtained, where the solutions can
be performed iteratively using efficient acceleration methods
such as the multilevel fast multipole algorithm (MLFMA) [1].
On the other hand, accurate solutions of many real-life
problems require discretizations with millions of elements
leading to matrix equation with millions of unknowns. We
consider the solutions of these large problems by employing
a parallel MLFMA on a cluster of relatively inexpensive
processors connected via special fast networks. Using robust
preconditioners including a nested preconditioner based on
an approximate MLFMA (AMLFMA), iterative solutions are
performed efficiently, even for ill-conditioned matrix equation
that are obtained from EFIE.
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II. MLFMA SOLUTIONS OF INTEGRAL EQUATIONS

For the solutions of the scattering and radiation problems in-
volving three-dimensional conducting surfaces, discretization
of EFIE or CFIE leads to N x N dense matrix equation

N
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n=1

m=1,..,N, (1)

where Z,E;LC represents the matrix element, i.e., interaction of
mth testing and nth basis functions, vf}c represents the ele-
ments of the excitation vector obtained by testing the incident
fields, and a,, for n = 1,2, .., N are the unknown coefficients.
We apply a Galerkin scheme and choose the testing and basis
functions as Rao-Wilton-Glisson (RWG) functions [2]. Matrix
equations in (1) are solved iteratively, where the matrix-vector
multiplications are accelerated by MLFMA [1] as
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In (2), only the near-field interactions denoted by Z’ifﬁ are
calculated directly and stored in the memory, while the far-
field interactions are computed approximately in a group-
by-group manner. Based on the factorization of the Green’s
functions, aggregation, translation, and disaggregation steps
are performed in a multilevel scheme. This way, the overall
complexity of the matrix-vector multiplications is reduced to
O(Nlog N) for an N x N dense matrix equation.

III. SOLUTIONS OF CLOSED SURFACES BY CFIE

Formulations of closed geometries can be performed by
employing CFIE, which is free of the internal-resonance
problem and produces well-conditioned matrix equations. As
an example, we consider the solution of a scattering problem
involving a sphere of radius 96 illuminated by a plane wave.
The discretization of the problem with a mesh size of \/10
leads to 33,791,232 unknowns. This is the largest integral-
equation problem ever solved in computational electromagnet-
ics, to the best of our knowledge. Iterative solution of the prob-
lem is achieved by a biconjugate-gradient-stabilized (BiCGS)
algorithm accelerated by a parallel MLFMA. The solution
is performed on a cluster of quad-core Intel Xeon 5355
processors connected via an Infiniband network. Parallelizing
the solution into 16 process, setup of the program takes 177
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Fig. 1. Bistatic RCS of a sphere of radius 96 in the (a) 160° — 170° and
(b) 170° — 180° ranges, where 180° corresponds to the forward-scattering
direction. Computational values obtain by the solution of a 33,791,232-
unknown problem are in agreement with the analytical curve obtained by
a Mie series solution.

minutes and the iterative solution is completed in 265 minutes.
Some important details of the solution are as follows:

1) An MLFMA tree is constructed by including the geom-
etry in a cubic box, which is recursively divided into
sub-boxes (clusters). The tree structure has a total of 11
levels and the size of the smallest clusters is 192\ X
2710 = 0.1875X. We note that 9 of these levels are
active, i.e., MLFMA operations such as aggregations
and translations are performed at 9 levels. Total number
of clusters is 5,904,951 and the number of clusters in
the lowest level, which includes the basis and testing
functions, is 4,344,205.

2) The number of near-field interactions that are calculated
directly is 3,732,101,432. Calculation of these interac-
tions dominates the setup time (177 minutes). Using
a single-precision array, near-field interactions require
total of 27.8 GB of memory, which is equally distributed
among the processors using a load-balancing algorithm.

3) Truncation numbers in MLFMA for 2-digits of accuracy
are 6 (L;,;n) and 546 (L,,..) for the lowest-level

and highest-level clusters, respectively. We sample the
radiation and receiving patterns of the basis and testing
functions at (Ly,in + 1) X (2L, +2) points, which can
be reduced to (Lyin/2 + 1) X (2Lypn + 2) using the
symmetry. These patterns are calculated analytically and
stored in the memory before the iterations. CFIE requires
the calculation of both radiation and receiving patterns,
while the receiving patterns can be omitted in the EFIE
solutions using a Galerkin scheme. Considering both
and ¢ components of the patterns, total of 56 GB of
memory is required in single-precision representation.
These patterns are distributed among the processors con-
sidering the far-field partitioning of the matrix equation,
which is usually different from the near-field partitioning
for efficiency.

4) Due to the symmetry of the cubic clusters, the number of
translation operators required to perform the cluster-to-
cluster interactions can be reduced significantly. Using
a one-box-buffer scheme, the memory required to keep
the translation operators is total of 2 GB.

5) In a matrix-vector multiplication, radiated and incoming
fields calculated during the aggregation and disaggrega-
tion processes, respectively, are kept in double-precision
arrays requiring total of 79 GB of memory. To improve
load-balancing, we employ different strategies to dis-
tribute the clusters in the lower and higher levels of the
tree structure [3]. For the lower levels, each cluster is
assigned to a single processor. A load-balancing algo-
rithm is used to distribute the clusters in the lower levels
equally among the processors. In the higher levels, each
cluster is assigned to all processors partially by partition-
ing the radiation and receiving patterns. For the lower
levels, some of the translations require communications
between the processors while all the translations in the
upper levels can be completed without any communi-
cation. For this problem with 33,791,232 unknowns,
each matrix-vector multiplication is performed in 370
seconds.

To demonstrate the accuracy of the solutions, Fig. 1 presents
the bistatic radar cross section (RCS) of the sphere from 160°
to 180°, where 180° corresponds to the forward-scattering
direction. We observe that the computational values that are
sampled with 0.1° intervals are very close to the analytical
curve obtained by a Mie-series solution. The root-mean-square
error of the RCS is only 0.547 decibels (dB) in the 160°—170°
range and 0.915 dB in the 170° — 180° range.

IV. SOLUTIONS OF OPEN SURFACES BY EFIE

For the solutions of the scattering and radiation problems
involving open geometries such as depicted in Fig. 2, EFIE
is inevitably used to formulate the problems since CFIE is
not applicable to open surfaces. Unfortunately, EFIE usually
produces ill-conditioned matrix equations that are difficult to
solve iteratively [4]. Especially, as the problems size grows,
strong preconditioners are required to obtain a quick conver-
gence. On the other hand, it is also desirable to implement
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Fig. 2. Geometries involving open surfaces.
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TABLE I
OPEN GEOMETRIES SOLVED BY MLFMA. THE “SIZE” COLUMN STANDS
FOR THE MAXIMUM SIDE LENGTH IN TERMS OF \.

[ Problem | Freq. (GHz) | Size (\) [ Levels [ Unknowns ]

P 48 48 9 790,656
P2 96 96 10| 3,164,544
P3 92 192 1| 12,662,016
HSI 9.25 185 8 159,452
HS2 185 37 9 638,392
HS3 37 74 10 | 2,554,736
OPI 20 35 9 182,780
OP2 40 69 10 731,896
OP3 80 139 1| 2,929,136

[ RA | 373 | 926 | 10 | 2515103 |

efficient preconditioners with low complexities. In this manner,
sparse approximate inverse (SAI) preconditioner is commonly
used to accelerate the EFIE solutions [5]. However, even this
type of robust preconditioners that are built from the near-
field interactions may become inefficient as the problem size
grows. As a remedy, we propose AMLFMA, which is based on
approximating the full matrix by systematically reducing the
accuracy of MLFMA. By employing AMLFMA in an inner-
outer scheme, we develop an alternative robust preconditioner,
which usually performs better than the SAI preconditioner.

AMLEFMA is developed by carefully reducing the samples
of the radiation and receiving patterns of the clusters in
MLFMA. For this purpose, we use an approximation factor a,
which is defined in the range from 0.0 to 1.0. Then, AMLFMA
uses the reduced truncation numbers

LG = Lpyin + af (Ll - Lmin) 3)

for level [, where L,,;, is the truncation number defined for
the lowest level and L; is the original truncation number (for
level ) in the full MLFMA. When ay = 1.0, AMLFMA
corresponds to the full MLFMA. On the other hand, as it
decreases towards 0.0, AMLFMA becomes less accurate but

TABLE 11
COMPARISON OF SAI AND AMLFMA PRECONDITIONERS FOR THE
SOLUTIONS OF OPEN PROBLEMS.

SAI AMLFMA
Problem | Iterations Time (min.) | Iterations Time (min.)
Pl 128 11 23 6
P2 195 95 36 46
P3 275 559 53 270
HS1 174 5 24 3
HS2 321 37 44 18
HS3 547 289 70 111
OP1 206 10 35 5
OP2 285 77 65 35
OP3 539 613 122 275
[ RA [ >1000 - [ 322 429 ]

much cheaper, especially if the number of levels is high. Our
numerical experiments show that ay = 0.2 is a good choice.
To demonstrate the performance of the AMLFMA pre-
conditioner, we consider various scattering problems that are
depicted in Fig. 2 and also listed in Table 1. One of these prob-
lems, namely, P3, is the largest ever reported EFIE problem.
Each problem is solved by generalized minimal residual (GM-
RES) and flexible GMRES (FGMRES) methods, which use
SAI and AMLFMA preconditioners, respectively. For the
SAI preconditioner, near-field pattern is used to select the
nonzero elements of the approximate inverse. In the FGMRES
solutions, where AMLFMA is employed as the preconditioner,
the inner solutions are performed by GMRES, which is further
accelerated by SAIL. The inner iterations are stopped when
the residual error drops below 0.1 or the number of iterations
reaches to 10. Solutions of the scattering problems with 10~6
residual error are listed in Table II, where we observe a
significant improvement by AMLFMA compared to SAL. All
solutions are parallelized into 32 processes and performed
on a cluster of quad-core Intel Xeon 5355 processors. For
the problems that are solvable with SAI, solution times are
reduced by about 50% using AMLFMA. For the reflector
antenna problem denoted by RA, we observe that SAI cannot
provide a convergence within 1000 iterations, while the same
problem is solved by using AMLFMA in 322 iterations.
Finally, we present the results of the scattering prob-
lems involving metamaterial (MM) blocks constructed by
the arrangement of the split-ring resonantors (SRRs) and
thin wires (TWSs). Since both SRRs and TWs are modelled
by perfectly-conducting sheets, these scattering problems are
formulated by EFIE. Fig. 3 depicts the power transmission for
an SRR block, which is constructed by employing 4 x 18 x 11
unit cells. The block is illuminated by a Hertzian dipole and
the scattering problem is solved at 85 GHz and 100 GHz.
At 85 GHz, the SRR block is almost transparent and the
power transmission is unity (0 dB) in the transmission region
(left-hand side of the block). On the other hand, at 100 GHz,
which is the resonance frequency of the SRRs [6], negative
permeability is stimulated in the medium and we observe the
shadowing effect. Using TWs in addition to SRRs, we con-
struct composite MMs (CMMs), which show double-negative
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Fig. 3. Power transmission (dB) for a 4 x 18 x 11 SRR block when it is
illuminated by a Hertzian dipole (shown by dot in the figure) at (a) 85 GHz
and (b) 100 GHz.

property around the resonance frequency. Fig. 4 depicts the
power transmission for a CMM block, which is constructed
by inserting TWs into 4 x 18 x 11 SRR block. We observe
that the CMM block prevents the power from passing into
the transmission region at 85 GHz. However, the transmission
through the block increases at 100 GHz, since both effective
permittivity and permeability become negative.

For the solutions of the SRR and CMM problems, dis-
cretization of the geometries leads to 66,528 and 112,128
unknowns, respectively. Although these are relatively small
problems compared to others considered in this paper, solu-
tions of the MM problems are extremely difficult and need
strong preconditioners. Because, MM structures present nu-
merical resonances (in addition to the physical resonances)
that inhibits a rapid convergence in the iterative solutions. As
an example, using the SAI preconditioner, number of GMRES
iterations for the SRR problem is 53 and 254 at 85 GHz
and 100 GHz, respectively, to reduce the residual error below
10~3. For much larger problems, SAI becomes insufficient so
that we need AMLFMA for efficient solutions.

V. CONCLUSIONS

We report our efforts to solve large-scale problems in
electromagnetics using preconditioned MLFMA. By develop-
ing robust implementations, we have been able to solve 12-
million-unknown EFIE and 33-million-unknown CFIE prob-
lems. To our knowledge, these are the solutions of the largest
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Fig. 4. Power transmission (dB) for a CMM block constructed by thin wires
and 4 X 18 x 11 SRR block when it is illuminated by a Hertzian dipole
(shown by dot in the figure) at (a) 85 GHz and (b) 100 GHz.

integral-equation problems that have ever been reported. More
examples, especially on large and complicated MM structures,
will be provided during the presentation.
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