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Abstract— We consider the solution of electromagnetic scat-
tering problems involving relatively large dielectric objects with
moderate and low contrasts. Three-dimensional objects are dis-
cretized with Rao-Wilton-Glisson functions and the scattering
problems are formulated with surface integral equations. The
resulting dense matrix equations are solved iteratively by em-
ploying the multilevel fast multipole algorithm. We compare the
accuracy and efficiency of the results obtained by employing
various integral equations for the formulation of the prob-
lem. If the problem size is large, we show that a combined
formulation, namely, electric-magnetic current combined-field
integral equation, provides faster iterative convergence compared
to other formulations, when it is accelerated with an efficient
block preconditioner. For low-contrast problems, we introduce
various stabilization procedures in order to avoid the numerical
breakdown encountered in the conventional surface formulations.

I. INTRODUCTION

Surface integral equations are commonly used to formulate
scattering problems involving dielectric objects with arbitrary
shapes [1]. By using equivalent electric and magnetic cur-
rents, boundary conditions are satisfied on the surface of the
scatterer. In the literature, there are various integral-equation
formulations derived by using different combinations of the
boundary conditions and testing schemes [1]–[6]. When the
problem size is large, discretizations of the integral-equation
formulations lead to large matrix equations, which can be
solved iteratively with accelerated matrix-vector multiplica-
tions by the multilevel fast multipole algorithm (MLFMA) [7].
On the other hand, efficient solutions require rapid conver-
gence of the iterations, which depends on the formulation.
In addition, accuracy of the results also depends on the
formulation type, even if the formulations are discretized in
the same way. In this paper, we extensively compare various
surface formulations in terms of efficiency and accuracy.
Specifically, we consider the combined T formulation (CTF),
the modified N-Müller formulation (MNMF), and the electric-
magnetic current combined-field integral equation (JMCFIE),
which are developed recently for stable solutions of dielectric
problems. These formulations are compared by solving scat-
tering problems involving dielectric spheres of various sizes
discretized with 4000 to 3,000,000 unknowns.

When the contrast of the object is low, i.e., when the
electric properties of the inner and outer media are close the
each other, conventional surface formulations become inaccu-
rate to calculate the scattered fields. For accurate solutions,
conventional formulations should be stabilized by extracting
the nonradiating currents and solving the equations only for
the radiating currents. In this paper, we introduce various
stabilization procedures involving different arrangements of
the right-hand sides (RHSs) of the equations. Using a novel
field-based stabilization technique, we obtain accurate results
for arbitrarily low-contrast problems, even when the contrast
of the object is extremely low. The stabilization procedures
are presented for CTF, while they are also applicable to other
conventional formulations.

II. SURFACE FORMULATIONS OF DIELECTRIC PROBLEMS

In the surface formulations of scattering problems involving
homogenous dielectric objects, the operators are defined as

Tl{X(r)} = ikl

∫
S

dr′
[
X(r′) +

1
k2
l

∇∇′ ·X(r′)
]
gl(r, r′)

(1)

Kl{X(r)} =
∫
PV,S

dr′X(r′)×∇′gl(r, r′) (2)

I{X(r)} = X(r) (3)

for outside (l = 1) and inside (l = 2) the object. In (1) and (2),
S is the surface of the object, PV indicates the principal value
of the integral, kl = w

√
µlεl is the wavenumber associated

with medium l, and

gl(r, r′) =
exp (iklR)

4πR

(
R = |r − r′|

)
(4)

is the homogenous-space Green’s function. Using the opera-
tors in (1)-(3), scattered electric and magnetic fields can be
obtained from the surface equivalent currents, i.e.,

J(r) = n̂×H(r) (5)

M(r) = −n̂×E(r). (6)
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Then, the boundary conditions for the tangential fields are
enforced on the surface of the scatterer to calculate the
unknown equivalent currents, as well as the scattered electric
and magnetic fields. In the literature, there are various integral-
equation formulations derived by using different combinations
of the boundary conditions and testing schemes [1]–[6]. For
example, the T formulations are obtained when the boundary
conditions are tested directly by using the tangential unit vec-
tor t̂ at the observation point. Among various T formulations,
CTF is derived as [5]

t̂ ·
[ ZT11 ZT12
ZT21 ZT22

]
·
[

J(r)
M(r)

]
= −t̂ ·

[
η−1
1 Einc(r)
η1H

inc(r)

]
,

(7)

where

ZT11 = ZT22 = T1 + T2 (8)

ZT12 = −η−1
1 K1 − η−1

2 K2 + 0.5
(
η−1
2 − η−1

1

)
n̂× I (9)

ZT21 = η1K1 + η2K2 + 0.5
(
η1 − η2

)
n̂× I. (10)

In (7)–(10), Einc(r) and Hinc(r) are the incident electric and
magnetic fields, ηl =

√
µl/εl is the impedance of the medium

l = 1, 2, and n̂ is the outward normal vector on the surface.
In contrast to the T formulations, N formulations involve

a projection operation using the unit normal vector n̂. For
example, MNMF can be derived as [4]

n̂×
[ ZN11 ZN12
ZN21 ZN22

]
·
[

J(r)
M(r)

]

= −n̂×
[
µ1H

inc(r)/(µ1 + µ2)
−ε1Einc(r)/(ε1 + ε2)

]
, (11)

where

ZN11 =
µ1

µ1 + µ2
K1 − µ2

µ1 + µ2
K2 + 0.5n̂× I (12)

ZN12 =
µ1

µ1 + µ2
η−1
1 T1 −

µ2

µ1 + µ2
η−1
2 T2 (13)

ZN21 = − ε1
ε1 + ε2

η1T1 +
ε2

ε2 + ε2
η2T2 (14)

ZN22 =
ε1

ε1 + ε2
K1 − ε2

ε1 + ε2
K2 + 0.5n̂× I. (15)

Both CTF and MNMF are free of the internal-resonance
problem and provide stable solutions.

In this paper, we investigate the efficiency and accuracy of
the T and N formulations when they are discretized with Rao-
Wilton-Glisson (RWG) functions defined on planar triangles.
Adopting a Galerkin scheme, we use the same set of RWG
functions as the basis and testing functions. In general, the
T and N formulations are similar to the electric-field inte-
gral equation (EFIE) and the magnetic-field integral equa-
tion (MFIE), respectively, for perfectly-conducting objects. We
also consider the counterpart of the combined-field integral
equation (CFIE), namely, JMCFIE [6], derived as[ ZTN11 ZTN12

ZTN21 ZTN22

]
·
[

J(r)
M(r)

]
= −

[
vTNa
vTNb

]
, (16)

where

ZTN11 = ZTN22 = t̂ · (T1 + T2) + n̂× (K1 −K2)− I (17)

ZTN12 = t̂ · (−η−1
1 K1 − η−1

2 K2) + n̂× (η−1
1 T1 − η−1

2 T2)
+ 0.5

(
η−1
2 − η−1

1

)
t̂ · n̂× I (18)

ZTN21 = t̂ · (η1K1 + η2K2) + n̂× (−η1T1 + η2T2)
+ 0.5

(
η1 − η2

)
t̂ · n̂× I (19)

and

vTNa = η−1
1 t̂ ·Einc(r) + n̂×Hinc(r) (20)

vTNb = η1t̂ ·Hinc(r)− n̂×Einc(r). (21)

Similar to CFIE, JMCFIE produces well-conditioned matrix
equations, which are crucial for iterative solutions.

III. ITERATIVE SOLUTIONS OF SURFACE FORMULATIONS

BY MLFMA

For the simultaneous discretization of the integral equations
and the scatterer surface, unknown current densities are ex-
panded in a series of basis functions, i.e.,

J(r) = n̂×H(r) =
N∑
n=1

xnbn(r) (22)

M(r) = −n̂×E(r) =
N∑
n=1

ynbn(r). (23)

Testing the integral equations on the surface, 2N×2N matrix
equations are constructed as[

Z̄11 Z̄12

Z̄21 Z̄22

]
·
[

x
y

]
=
[

vinc1

vinc2

]
, (24)

where the matrix elements correspond to the interactions of
the basis and testing functions and the RHS vector is obtained
by testing the incident fields. We note that the matrix elements
involve combinations of discretized operators depending on the
formulation. Considering the nth basis function bn(r) and the
mth testing function tm(r), K and T operators are discretized
as

t̂ · K →K
T

l [m,n] =
〈
tm(r),Kl{bn(r)}

〉
(25)

n̂×K →K
N

l [m,n] =
〈
tm(r), n̂×Kl{bn(r)}

〉
(26)

t̂ · T → T
T

l [m,n] =
〈
tm(r), Tl{bn(r)}

〉
(27)

n̂× T → T
N

l [m,n] =
〈
tm(r), n̂× Tl{bn(r)}

〉
(28)

where 〈
tm(r),f(r)

〉
=
∫
Sm

drtm(r) · f(r) (29)

is an integral on the support of the testing function Sm.
The matrix equation in (24) can be solved iteratively,

where the matrix-vector multiplications are performed effi-
ciently with MLFMA [7]. In MLFMA, only the near-field
interactions are computed directly by calculating the integrals
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Fig. 1. Number of BiCGStab iterations (10−3 residual error) for the solution
of scattering problems involving spheres of various radii from 0.75λ1 to 20λ1

discretized with λ1/10 mesh size.

on the basis and testing domains. On the other hand, far-
field interactions are calculated approximately in a group-
by-group manner using the factorization and diagonalization
of the Green’s function. First, the scatterer is included in a
cubic box and the computational domain is recursively divided
into subboxes (clusters). Then, a multilevel tree structure is
constructed by considering the nonempty clusters in all levels.
MLFMA involves three main stages performed on the tree
structure.

1) Aggregation: Radiated fields at the centers of the clusters
are calculated from the bottom of the tree structure to
the highest level.

2) Translation: Radiated fields at the centers of the clusters
are translated into incoming fields for other clusters.

3) Disaggregation: The total incoming fields at the centers
of the clusters are calculated from the top of the tree
structure to the lowest level. At the lowest level, the
incoming fields are received by the testing functions.

In the solution of dielectric problems with moderate and low
contrasts, we employ the same tree structure for both the
inner and the outer media. However, the sampling rate for the
radiated and incoming fields as well as the number of harmon-
ics for the translation operators depend on the wavenumber.
Therefore, an accurate calculation of the interactions requires
two separate versions of MLFMA to perform the matrix-vector
multiplications related to the inner and outer media. Using
MLFMA, matrix-vector multiplications can be performed in
O(N logN) time using O(N logN) memory. The details of
MLFMA can be found in [3],[7].

IV. ACCURACY AND EFFICIENCY OF THE SOLUTIONS

Using a Galerkin scheme, N formulations, such as MNMF
in (11), contain well-tested identity operators, i.e.,〈

tm(r), bn(r)
〉

=
∫
Sm

drtm(r) · bn(r) (30)

These strong interactions are located on the diagonal blocks
of the matrix equations. On the other hand, T formulations,
such as CTF in (7), contain weakly-tested identity operators,
i.e.,〈

tm(r), n̂× bn(r)
〉

=
∫
Sm

drtm(r) · n̂× bn(r) (31)

that are located on the non-diagonal blocks. For some T
formulations, the identity operators may completely vanish.
Since the T and N formulations have different forms of
identity operators, the two types of formulations show different
behaviors in terms of accuracy and conditioning.

1) N formulations are usually better conditioned than the
T formulations [5],[8]. Therefore, iterative solutions of
the N formulations are easier and they can be further
accelerated by employing simple and efficient precondi-
tioners.

2) Although they are better conditioned, N formulations
can be considerably less accurate compared to the T
formulations for the same discretization [5],[9]. The
source of the error is the identity operators and it
becomes evident when the discretization is performed
with the low-order RWG functions.

To compare the dielectric formulations in terms of effi-
ciency, Fig. 1 demonstrates the solutions of scattering prob-
lems involving spheres of various radii from 0.75λ1 to 20λ1,
where λ1 is the wavelength in the outer medium. The relative
permittivity (εr) of the inner medium is 2.0. Discretizations
with λ1/10 mesh size produce matrix equations with numbers
of unknowns from 4142 to 2,925,708. Spheres are illuminated
by a plane wave propagating in the z direction with the electric
field polarized in the x direction. Each problem is formulated
by CTF, MNMF, and JMCFIE, and the resulting matrix
equations are solved iteratively using MLFMA. Both near-
field and far-field interactions are computed with 1% error.
As the iterative solver, we employ the biconjugate-gradient-
stabilized (BiCGStab) algorithm. In addition, we use a block
preconditioner (BP) to accelerate the solutions of MNMF and
JMCFIE by transforming the original matrix equation as

P̄
−1 ·

[
Z̄11 Z̄12

Z̄21 Z̄22

]
·
[

x
y

]
= P̄

−1 ·
[

vinc1

vinc2

]
, (32)

where P̄ is the preconditioner matrix. To construct BP, we
consider the self interactions of the lowest level clusters, i.e.,

P̄ =
[

P̄ 11 P̄ 12

P̄ 21 P̄ 22

]
, (33)

where P̄ ab are block-diagonal matrices. Then, the inverse of
P̄ can be evaluated efficiently as [10]

P̄
−1 =

[
B̄11 B̄12

B̄21 B̄22

]
, (34)

where

B̄11 = P̄
−1
11

[
I + P̄ 12 · S̄−1 · P̄ 21 · P̄−1

11

]
(35)

B̄12 = −P̄
−1
11 · P̄ 12 · S̄−1

(36)
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Fig. 2. (a) Normalized bistatic RCS (RCS/λ2
1) of a sphere of radius 7.5λ1

with a relative permittivity of 2.0 in free space. (b) Relative error defined in
(39) for different formulations as a function of the bistatic angle.

B̄21 = −S̄
−1 · P̄ 21 · P̄−1

11 (37)

B̄22 = S̄
−1

(38)

and S̄ = P̄ 22 − P̄ 21 · P̄−1
11 · P̄ 12 is the Schur complement of

P̄ 11. In Fig. 1, we present the iteration counts to reduce the
residual error below 0.001. Without preconditioning, MNMF
offers faster convergence compared to JMCFIE and CTF, while
CTF has the slowest convergence. Using BP, convergence
of MNMF and JMCFIE can be accelerated further, while
the convergence of CTF becomes worse when BP is applied
(not shown in the figure). For large problems, BP reduces
the iteration counts for JMCFIE so effectively that JMCFIE
converges faster than MNMF. As the problem size gets larger,
the processing time for the setup of MLFMA, including
the calculation of the near-field interactions, radiation and
receiving patterns of the basis and testing functions, and
translation operators, becomes negligible compared to the
time required for the iterative solution. Consequently, for
the solution of large problems, JMCFIE becomes the most

0 45 90 135 180
0

10

20

30

40

50

60

70

80

R
C

S
/λ

12  (
dB

)

Bistatic Angle

Sphere (Radius = 20λ
1
 & ε

r
 = 2.0)

Mie
JMCFIE

20λ

Fig. 3. Normalized bistatic RCS (RCS/λ2
1) of a sphere of radius 20λ1 with

a relative permittivity of 2.0 in free space.

efficient formulation (even though its setup time is usually
longer than the time required for CTF and MNMF) when it is
accelerated with BP.

Fig. 2(a) presents the normalized bistatic radar cross
section (RCS/λ2

1) values in decibels (dB) for a sphere of radius
7.5λ1 and εr = 2.0. Analytical values obtained by a Mie-series
solution are plotted as a reference from 0◦ to 180◦, where
0◦ corresponds to the forward-scattering direction. Fig. 2(a)
shows that the computational values obtained with CTF are
close to the analytical results and they are more accurate
compared to the results of MNMF. For a more quantitative
comparison, Fig. 2(b) presents a relative error defined as

e(θ) =
|Ea(θ)− Ec(θ)|
maxθ |Ea(θ)| (39)

with respect to bistatic angle θ, where Ea(θ) and Ec(θ) are
analytical and computation values, respectively, for the co-
polar electric field. In addition to CTF and MNMF, we also
consider the relative error for JMCFIE. The maximum value of
the relative error for each formulation is also indicated in the
plot. We observe that CTF is the most accurate formulation,
while JMCFIE is more accurate than MNMF. In general, the
choice of the formulation depends on the application. CTF
offers more accurate results with low efficiency, while JMCFIE
becomes preferable for faster solutions.

Finally, Fig. 3 presents the bistatic RCS values for a sphere
of radius 20λ and εr = 2.0 discretized with 2,925,708
unknowns. The computational values obtained with JMCFIE
are close to the analytical curve obtained by a Mie-series
solution. The maximum relative error is 2.4%. This problem
cannot be solved in a reasonable number of iterations when it
is formulated with CTF or MNMF.

V. LOW-CONTRAST BREAKDOWN AND STABILIZATION OF

SURFACE FORMULATIONS

Conventional surface formulations, such as CTF, MNMF,
and JMCFIE, are stable and provide accurate results when
they are used to formulate problems involving moderate values
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of dielectric parameters. However, these formulations tend to
be less accurate as the contrast of the object decreases and
the electromagnetic material properties of the inner and outer
media converge to each other. There are various applications
that involve scattering from low-contrast objects. Examples are
plastic mines buried in soil [11], polymeric materials, such
as sub-micron latex particles in water [12], red blood cells in
blood plasma [13], and dielectric photonic crystals [14]. When
the contrast is low, however, it becomes difficult to obtain
accurate results with the conventional surface formulations
unless a stabilization procedure is applied.

Low-contrast breakdown of the surface formulations is due
to relatively large nonradiating parts of the induced currents
on the scatterer [15]. For any arbitrary solution, equivalent
electric and magnetic currents on the surface of the object can
be decomposed as

J(r) = n̂×H(r) = n̂×Hinc(r) + n̂×Hr(r)

= J inc(r) + Jr(r) (40)

M(r) = −n̂×E(r) = −n̂×Einc(r)− n̂×Er(r)

= M inc(r) + M r(r), (41)

where {J inc(r),M inc(r)} = {n̂×Hinc(r),−n̂×Einc(r)}
do not radiate. When the contrast of the object is small,
these nonradiating currents dominate the total currents. Then,
it becomes difficult to perform the calculations accurately
enough to capture the small radiating currents properly. In
other words, even though the surface currents J(r) and
M(r) are computed with relatively small error, scattered fields
cannot be obtained accurately from them.

For accurate solutions of low-contrast dielectric problems,
the conventional formulations can be modified by extracting
the incident fields from the total currents and solving only
the radiating currents as the unknowns of the problem [15].
To apply this stabilization procedure, we consider a modified
version of CTF derived as

t̂ ·

 η1T1 + η2T2 −

(
K1 +K2

)
η1η2

(
K1 +K2

)
η2T1 + η1T2


 · [ J(r)

M(r)

]

= −t̂ ·
[

Einc(r)
η2η1H

inc(r)

]
. (42)

Extracting the nonradiating currents and rearranging the equa-
tion, we obtain the stable CTF (S-CTF) as [16]

t̂ ·

 η1T1 + η2T2 −

(
K1 +K2

)
η1η2

(
K1 +K2

)
η2T1 + η1T2


 · [ Jr(r)

M r(r)

]

= t̂ ·

 η1T1 − η2T2 −

(
K1 −K2

)
η1η2

(
K1 −K2

)
η2T1 − η1T2


 · [ J inc(r)

M inc(r)

]
.

(43)

We note that the left-hand side (LHS) of the stable formulation
is the same as the LHS of CTF. In other words, the stabilization
procedure requires a modification only on the RHS of the
conventional formulation.
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Fig. 4. (a) Relative RMS error defined in (47) for the solutions of the
scattering problems involving a sphere of radius 6λ1 with different contrasts.
(b) Normalized bistatic RCS (RCS/λ2

1) of a sphere of radius 6λ1 and
permittivity 1 + 10−6 in free space.

On the RHS, S-CTF involves operators applied on the
incident fields, which can be evaluated directly by expand-
ing the fields in a series of basis functions and performing
matrix-vector multiplications [17]. The expansion of the fields
requires a solution of a sparse matrix equation and its cost
is negligible. However, the sparse matrix involves discretized
identity operators, which may deteriorate the accuracy of the
results. An alternative and accurate way to expand the incident
fields is to solve the discrete form of the equation [17]

t̂ ·
[
η1T1 −K1

K1 η−1
1 T1

]
·
[

J inc(r)
M inc(r)

]
= −1

2
t̂ ·
[

Einc(r)
Hinc(r)

]
,

(44)

which is completely free of the identity operator. Then, the
stabilization of CTF involves the solution of a dense matrix
equation in addition to the solution of the original equation.
The resulting stable formulation is called double-stabilized
CTF (DS-CTF) [17].

Although S-CTF and DS-CTF provide accurate results for
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low-contrast problems that cannot be solved accurately with
the conventional formulations, they also have limitations; they
break down when the contrast is decreased to very low values.
For accurate solutions of arbitrarily low-contrast problems,
we propose the field-based-stabilized CTF (FBS-CTF) [17],
derived as

t̂ ·

 η1T1 + η2T2 −

(
K1 +K2

)
η1η2

(
K1 +K2

)
η2T1 + η1T2


 · [ Jr(r)

M r(r)

]

= −1
2
t̂ ·
[

Einc(r)−Einc
2 (r)

η2η1H
inc(r)− η2η1Hinc

2 (r)

]

− t̂ ·
[

η2T2 −K2

η1η2K2 η1T2
]
·
[

J inc(r)− n̂×Hinc
2 (r)

M inc(r) + n̂×Einc
2 (r)

]
.

(45)

In the above, Einc
2 (r) and Hinc

2 (r) are fictitious incident
fields defined as

{Einc
2 (r),Hinc

2 (r)} = lim
ε2→ε1
µ2→µ1

{Einc(r),Hinc(r)}. (46)

We note that LHS of FBS-CTF is the same as the LHS of CTF;
it requires a modification only on the RHS of the conventional
formulation, similar to S-CTF and DS-CTF.

Fig. 4 presents the results of scattering problems involving a
sphere of radius 6λ discretized with 264,006 RWG functions.
Scattering problems are solved by 5-level MLFMA, where
the near-field and far-field interactions are calculated with
1% error. The sphere is in free space, it has various relative
permittivities from εr = 1 + 10−1 to εr = 1 + 10−9, and it is
illuminated by a plane wave propagating in the z direction with
the electric field polarized in the x direction. Fig. 4(a) presents
the relative root-mean-square (RMS) error as a function of the
contrast (εr − 1). To calculate the error, we first compute the
far-zone electric field on the φ = 0◦ plane at p = 360 points
from 0◦ to 180◦. Then, the relative RMS error is defined as

eRMS =
||EC −EA||2
||EA||2 , (47)

where EC and EA are the computational and analytical values
(arrays of p elements containing co-polar electric fields),
respectively, and ||.||2 represents the 2-norm of the arrays.
Fig. 4(a) shows that the RMS error of CTF increases sharply
when the contrast decreases below 10−1, while S-CTF and DS-
CTF break down when the contrast is about 10−5. On the other
hand, the error of FBS-CTF is almost constant with respect to
the contrast. We also note the relatively high accuracy of DS-
CTF, which is completely free of the identity operator, in the
10−1−10−5 range. Finally, Fig. 4(b) depicts the bistatic RCS
values on the φ = 0◦ plane when the contrast of the sphere is
10−6. We observe that all formulations, except for the FBS-
CTF, fail to provide accurate results compared to Mie-series
solution.

VI. CONCLUSION

In this paper, we consider accurate and efficient solutions
of scattering problems involving large dielectric objects with

moderate and low contrasts. When the problem size is large,
JMCFIE accelerated with a block preconditioner is preferable
for efficient solutions. We report various procedures to sta-
bilize the surface formulations for accurate solutions of low-
contrast dielectric problems.
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