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Abstract—An efficient technique to improve the accuracy
of the finite-difference time-domain (FDTD) solutions employ-
ing incident-wave excitations is developed. In the separate-field
formulation of the FDTD method, any incident wave may be
efficiently introduced to the three-dimensional (3-D) computa-
tional domain by interpolating from a one-dimensional (1-D)
incident-field array (IFA), which is a 1-D FDTD grid simulating
the propagation of the incident wave. By considering the FDTD
computational domain as a sampled system and the interpolation
operation as a decimation process, signal-processing techniques
are used to identify and ameliorate the errors due to aliasing.
The reduction in the error is demonstrated for various cases. This
technique can be used for the excitation of the FDTD grid by any
incident wave. A fast technique is used to extract the amplitude
and the phase of a sampled sinusoidal signal.

Index Terms—Aliasing, decimation, electromagnetic scattering,
FDTD, incident-field array, incident-field excitation, interpola-
tion, sampling.

I. INTRODUCTION

T HE finite-difference time-domain (FDTD) method [1]–[6]
is an efficient, flexible, robust, and easy-to-implement

technique to solve time-dependent Maxwell’s equations. The
FDTD method did not receive much interest when it was
first suggested three decades ago [1]. With the increase of
computing power available to the scientists in recent years, the
FDTD method has become one of the most popular solution
techniques in the area of computational electromagnetics.

Electromagnetic scattering problems, where the objects are
placed in unbounded media and illuminated by incident waves
of various types, are among the wide variety of problems
solved by using the FDTD method [7]. Therefore, capa-
bilities have been added to the FDTD method to simulate
the propagation of the incident waves in unbounded media
and their interaction with the scatterers. In this paper, we
will investigate the errors introduced to the FDTD solution
through incident-wave excitations and present an efficient
technique to reduce these errors. Although the usefulness
of this technique will be demonstrated using plane-wave
excitations with sinusoidal time dependence, the applicability
of the technique is not limited by plane waves or waves with
sinusoidal time dependence. The technique presented in this
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paper can be used for the excitation of the FDTD grid by any
incident wave.

II. I NCIDENT-WAVE EXCITATION SCHEMES

In [8] and [19], we discussed in detail various excitation
schemes for the FDTD solutions of scattering problems. We
addressed the merits of the total-field, scattered-field, and
separate-field formulations [9]–[11] in a comparative manner.
We also compared the closed-form incident field (CFIF) versus
the incident-field array (IFA) excitation schemes. In this paper,
we will use the IFA scheme in conjunction with the separate-
field formulation.

The IFA is an efficient method of computing incident fields,
which was first proposed by Taflove [5], and applied in [8]
and [19] with some improvements. The IFA is an FDTD-
based look-up table, from which incident-field values are
interpolated. The look-up table is a one-dimensional (1-D)
grid excited by a hard source, on which the incident wave
is propagated by the 1-D FDTD equations. This source grid or
IFA is assumed to point in the direction of propagation of the
incident wave, as shown in Fig. 1(a). When an incident-field
value has to be computed at a particular point in the three-
dimensional (3-D) computational domain, the relative position
of that point is first determined on the source grid. Then, the
desired incident-field value is interpolated from the 1-D vector
elements. Fig. 1(a) depicts the case of linear interpolation
using the closest two points in the source grid, as originally
suggested by Taflove [5], although cubic interpolation is used
in this paper for improved accuracy [8]. The efficiency of
the IFA scheme is due to the fact that both the 1-D FDTD
propagation in the IFA and the interpolation operations on
the connecting boundary require simple multiplications and
additions instead of the evaluation of complicated expres-
sions.

An accurate excitation of the 3-D grid by the 1-D IFA
requires the equalization of the numerical phase velocities
in the two grids [5], [8]. This is achieved by modifying the
material parameters used in the 1-D FDTD equations as

(1)
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(a) (b)

Fig. 1. (a) The standard IFA excitation scheme in the separate-field formulation. The 1-D source grid (IFA) points in the direction of propagation. The
incident-field values in the 3-D computational domain are interpolated from the closest two elements of the 1-D source grid (when linear interpolation is used).
(b) Increasing the sampling rate in the source grid. The elements of the 1-D grid are much closer to the point of interest in the 3-D computational domain.

Fig. 2. The maximum errors onEz for 4-, 8-, 16-, and 32-times-better sampled IFA excitations together with the standard IFA excitation. A half-period-long
Hanning window is used for smoothing in all five computations.

(2)

where is the direction-dependent numerical phase
velocity in the 3-D grid, which is related to the numerical
wavenumber through

(3)

The numerical wavenumber satisfies the discretized disper-
sion relation

(4)
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(a)

(b)

Fig. 3. Error results using a half-period-long Hanning window. The results on the left and right sides are obtained with the standard and eight-times-better
sampled IFA excitations, respectively. (a) Maximum error onEz . (b) FFT of the error onEz at a particular point.

III. I MPROVING THE ACCURACY OF THEIFA EXCITATION

If the accuracy of the IFA excitation is not enough for a
certain application, the method can be modified to increase
the accuracy. This modification is simply to use a finer
discretization in the 1-D source grid. That is, the time and
frequency sampling periods in the 1-D source grid are reduced
by a fixed integer . Then, of the IFA grid points fall in
between two neighboring grid points in the 3-D computational
domain. The geometrical view of such an increase in the
sampling frequency of the IFA is depicted in Fig. 1(b), for
the case of . When the source grid is sampled times
better than the 3-D grid, the 1-D finite-difference equations
(1) and (2) are used times during one time step of the
3-D FDTD algorithm. Clearly, a finer sampling of the 1-D
source grid results in more accurate FDTD calculations and,
hence, more accurate incident-field values on the 1-D source
grid. Furthermore, as the samples get denser on the source
grid, the incident-field values in the 3-D grid are interpolated
from closer samples and, thus, the quality of the interpolated

incident-field value will be better. As a result, by using a
finely sampled source grid, the accuracy of the incident-wave
simulation is doubly increased. Note that the cost of the 1-D
FDTD calculations on the source grid is negligible compared
to the cost of the 3-D FDTD calculations in the computational
domain.

In order to quantify the errors created in the plane-wave
generation process and to isolate these errors from other FDTD
errors, the excitation and propagation of waves in a homo-
geneous media are considered. A 3-D empty computational
domain composed of 30 30 30 Yee cells and terminated
by 8-cell-thick perfectly matched layer (PML) [12]–[14] is
set up for this purpose. The PML walls are designed to have
a theoretical normal reflection coefficient of 10 and
parabolic conductivity profile. The space sampling period is

cm. The time step is selected at the Courant
stability limit as ps. Separate-field formulation
is employed with a total-field region of 18 18 18 cells and
a six-cell-thick scattered-field region. The incident plane-wave
values are computed with the CFIF scheme. The plane wave
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(a)

(b)

Fig. 4. Error results using a one-period-long Hanning window. The results on the left and right sides are obtained with the standard and eight-times-better
sampled IFA excitations, respectively. (a) Maximum error onEz (b) FFT of the error onEz at a particular point.

is incident at and . The incident electric field
is polarized in the -direction and its amplitude is unity. The
incident magnetic field is polarized in the direction of .
The time dependence of the incident plane wave is given by1

(5)

where GHz and is either the unit step function
or a Hanning window defined as

if

if

otherwise.

(6)

Note that becomes a unit step function when .
For , the Hanning windows help reduce the FDTD

1This is not a finite-duration excitation. Therefore, physically nonzero
quantities are expected to reach nonzero steady-state values for sufficiently
large values of time.

errors due to the high-frequency components of the
excitation signal by smoothing the time dependence of
the incident plane wave [19].

Ideally, the fields in the total-field region of the FDTD
grid should be exactly the same as the incident plane wave,
and the field variables in the scattered-field region should be
identically equal to zero. However, due to the approximate
nature of the FDTD method, computationally obtained field
variables are expected to deviate from their ideal counterparts.
The deviation, i.e., the error, can be computed at each time
step, in every cell, and for any field component. Fig. 2 shows
the maximum value of the error in the field component
over both the total-field and scattered-field domains at each
time step for , , , , and . These error results
are obtained by using a Hanning window of length

, where is the period of the sinusoidal time
dependence of the incident plane wave. The input signal is
multiplied by a smoothing window at the early stages in order
to decrease the errors due to the abrupt change at the onset of
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(a)

(b)

Fig. 5. Error results using a two-period-long Hanning window. The results on the left and right sides are obtained with the standard and eight-times-better
sampled IFA excitations, respectively. (a) Maximum error onEz . (b) FFT of the error onEz at a particular point.

the input signal, which has high-frequency components [19].
The error levels for in Fig. 2 show great improvement
with respect to the standard IFA ( ) excitation results.
However, one would expect the results to get progressively
better as the value of is increased. Fig. 2 shows that this is
not necessarily correct, as the error levels for , , and

are actually slightly worse than that of . The reason
for this result will be explained in Sections IV and V.

Figs. 3–5 depict a careful investigation of the effect of
the eight-times-better sampled IFA excitation ( ) on
the FDTD errors. In Figs. 3–5, half-, one-, and two-period-
long Hanning windows are used for smoothing. In each
figure, the error results for an eight-times-better sampled
source grid ( ) are compared to the results of the
corresponding standard IFA excitation ( ). Figs. 3(a),
4(a), and 5(a) (and other similar error plots in this paper)
show the maximum value of the error in the compo-
nent over both the total- and scattered-field domains at each
time step. In order to have a better understanding of the
nature of the error, Figs. 3(b), 4(b), and 5(b) show the fre-
quency spectra of the error in the component at the

first cell the incident wave touches in the total-field do-
main.

Fig. 3 shows the effects of the eight-times-better sampled
IFA excitation using a half-period-long Hanning window. The
maximum error level is decreased by more than one order of
magnitude, as shown in Fig. 3(a). In Fig. 3(b), the error signal
for the standard IFA excitation is seen to have a dominant
frequency component of 1 GHz, which is significantly reduced
by using eight-times-better sampling in the source grid.

In Fig. 4, the performances of the standard and the eight-
times-better sampled IFA computation schemes are compared
for a full-period-long Hanning window used for smoothing.
Fig. 4(a) shows that the maximum error level is decreased by
almost two orders of magnitude. The 1-GHz component in the
error signal is again reduced, as shown in Fig. 4(b). Fig. 5,
where the results obtained with a two-period-long Hanning
window are presented, is also in agreement with Figs. 3 and 4.
In Fig. 5(a), increasing the sampling frequency of the source
grid eight times decreases the maximum error level down to
10 , which is almost three orders of magnitude lower than the
error level obtained with the standard IFA excitation scheme.
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(a)

(b)

Fig. 6. Error results using no smoothing windows. The results on the left and right sides are obtained with the standard and the eight-times-better sampled
IFA excitations, respectively. (a) Maximum error onEz . (b) FFT of the error onEz at a particular point.

(a) (b)

(c) (d)

Fig. 7. (a)–(b) Downsampling with no decimation filter causes aliasing. (c)–(d) Downsampling with a decimation filter. No aliasing occurs.
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Fig. 8. The frequency response of the decimation filter with�=8 cutoff used for eight-times-better sampled IFA excitation.

(a) (b)

Fig. 9. Error results for the eight-times-better sampled IFA excitation with a decimation filter. No smoothing window is used. The frequency responseof the
256-point digital filter is shown in Fig. 8. (a) Maximum error onEz in the computational domain. (b) FFT of the error signal onEz at a particular point.

In Figs. 3–5, the error levels are improved as the length of
the smoothing window is increased for the finer source grid
( ). However, the window length does not decrease
the maximum error level in the standard IFA computations
( ). In the three results with the standard IFA excitations
in Figs. 3–5, the dominant frequency component of the error
signal is always 1 GHz, which is the operating frequency of
the incident wave. The amplitude of the 1-GHz component of
the error cannot be reduced via smoothing since it is produced
by the numerical dispersion due to inherent discretization of
the FDTD algorithm. Thus, the 1-GHz component constitutes a
threshold for the error level. This threshold can be reduced by
employing a finer discretization in the FDTD method. Indeed,
increasing the space and time sampling rates by eight times in
Figs. 3–5 does overcome this threshold error level.

Using the same line of reasoning and noting that none of
the error signals produced by the finer source grid ( )
in Figs. 3–5 has a dominant frequency component of 1 GHz,
we can conclude that the error levels can be further improved.
This is because the threshold error level, which is the error
level of the 1-GHz component, has been reduced, and errors
at other frequencies dominate the error at 1 GHz. If we can
identify the sources of these other errors and reduce them,
further improvements in the error levels will result, as will be
discussed in the following two sections.

IV. ERRORS DUE TO DECIMATION

In the previous section, a better sampling of the source
grid produced more accurate results for the simulation of the
incident waves. In Figs. 3–5, the improvements obtained by
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(a) (b)

Fig. 10. Error results for the 8-times-better sampled IFA excitation with a decimation filter. A half-period-long Hanning window is used for smoothing. (a)
The frequency response of the 256-point digital filter is shown in Fig. 8. (b) FFT of the error signal onEz at a particular point.

the better sampling of the source grid were shown. Fig. 6
depicts a similar comparison between the error results obtained
with the standard and finely sampled IFA excitations when no
smoothing window is used, i.e., in (6). Surprisingly, an
improvement similar to those in Figs. 3–5 is not observed in
Fig. 6. On the contrary, the steady-state error level obtained by
using an 8-times-better sampled source grid is slightly higher
than that obtained by the standard IFA computation scheme,
which is not expected. Furthermore, in Fig. 2, error results
were presented with 4-, 8-, 16-, and 32-times-better sampled
source grids, which showed that the error levels for , ,
and were slightly higher than that of . The reasons
for these counterintuitive results will be explained below.

In Section III, it was explained that for an times better
sampled source grid, there are points in the source grid
corresponding to a single point in the 3-D FDTD grid. How-
ever, in the interpolation process, the information on these
points is mapped to a single point in the computational domain.
This process involves a hidden decimation or downsampling
operation in it. A decimation scheme causes aliasing on the
resultant signal unless a decimation filter is used before it
is applied [15]. The appropriate decimation filter is a digital
unity–gain low-pass filter with a normalized cutoff frequency
of . In Fig. 6(b), the eight-times-better sampling of the
source grid produces a significant dc component in the error
signal, which is absent in the result obtained with the standard
IFA computation scheme with no smoothing window. This dc
component hints at the presence of aliasing, which should be
due to the decimation operation in this case. If this hypothesis
is correct, then the reasons of the unexpected observations
noted in this section can be explained. This hypothesis will
be tested in the next section by using a properly designed
decimation filter.

V. USE OF A DECIMATION FILTER

Consider the frequency-domain representation of an arbi-
trary digital signal, as exemplified in Fig. 7(a). The signal is
sampled with a period of in time and a decimation
of order is applied to it. However, the content of the

signal is nonzero for frequencies larger than . Then, the
decimation produces the situation that is shown in Fig. 7(b),
where the frequency components that are higher than
overlap with the others and aliasing occurs. A decimation
filter is needed to prevent this situation. A low-pass filter with
unity gain and cutoff is applied to the signal before
the decimation, as shown in Fig. 7(c). Then, the frequency
components of the input signal that are higher than are
suppressed. If the decimation is applied after the filter is used,
then no frequency components overlap in the resultant signal,
and the aliasing is prevented, as depicted in Fig. 7(d).

The signal used in the FDTD simulations is sampled with
a frequency of about 83 GHz. times better sampling of the
source grid means that the sampling frequency is GHz
in the source grid. This frequency is normalized to, as
shown in Fig. 7. Then, the frequencies up to GHz
( in Fig. 7) can be resolved in the source grid. The cutoff
frequency for the antialiasing filter should be at least for
a decimation of order . That is, the cutoff frequency of the
low-pass filter should be less than or equal to 41.5 GHz.

In order to illustrate the benefits of using a decimation filter,
two sinusoidal input signals, one with no smoothing and one
with a half-period-long Hanning window, are sampled, filtered,
and fed into the hard source of the eight-times-better sampled
source grid. The frequency response of the decimation filter
is shown in Fig. 8. Fig. 9 shows the error results for the
filtered input with no smoothing window used. The steady-
state level of the maximum error in Fig. 9(a) is more than
one order of magnitude lower than the corresponding error
level in Fig. 6(a). Fig. 9(b) shows that the amplitude of the dc
component of the error signal is significantly reduced. Fig. 10
shows similar results for the input with a half-period-long
Hanning window used together with the decimation filter. The
maximum error is slightly below the corresponding error level
in Fig. 3(a), where no decimation filter was used.

In Figs. 9(b) and 10(b), it is shown that the dominant
frequency components are the high-frequency components
around 15 and 25 GHz. It is observed that these high-frequency
components adversely affect the accuracy of the results. The
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(a)

(b)

Fig. 11. (a) The frequency response of the decimation filter with 10 GHz cutoff used for 8-times-better sampled IFA excitation. (b) An expanded view
on the 0–41.5-GHz frequency band.

cutoff frequency of the low-pass filter can be chosen in such
a way as to exclude these high-frequency components from
the input. Since any selection between 1–41.5 GHz is valid,
the cutoff frequency of the low-pass filter will be chosen
at 10 GHz in order to keep these undesired high-frequency
components in the stopband. Fig. 11(a) shows the frequency
response of this new low-pass filter. The frequency band
of 0–41.5 GHz is shown in Fig. 11(b) with an expanded
view. Fig. 12 shows the error results for the input without

a smoothing window, but passed through the new decimation
filter. The maximum error level in Fig. 12(a) is more than two
orders of magnitude lower than that of Fig. 6(a). Fig. 12(b)
shows that the amplitudes of both the dc and the high-
frequency components of the error signal are significantly
reduced. Fig. 13 shows similar results for the input with
a half-period-long Hanning window used together with the
decimation filter. The maximum error is below the 10
level, which is about two orders of magnitude lower than the
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(a) (b)

Fig. 12. Error results for the eight-times-better sampled IFA excitation with a decimation filter. No smoothing window is used. The frequency response of
the 256-point digital filter is shown in Fig. 11. (a) Maximum error onEz in the computational domain. (b) FFT of the error signal onEz at a particular point.

(a) (b)

Fig. 13. Error results for the eight-times-better sampled IFA excitation with a decimation filter. A half-period-long Hanning window is used for smoothing.
The frequency response of the 256-point digital filter is shown in Fig. 11. (a) Maximum error onEz in the computational domain. (b) FFT of the
error signal onEz at a particular point.

corresponding error level in Figs. 3(a) and 10(a). Fig. 13(b)
shows that the dominant frequency component is the 1-GHz
component, which means the maximum error level has reached
the threshold for this problem. This is the ultimately desired
situation in reducing the error, as explained at the end of
Section III.

In Fig. 14, the maximum error levels for 4-, 8-, 16-, and
32-times-better sampled source grids are shown together.
These results are obtained using the half-period-long Hanning
window for smoothing and the decimation filter, shown in
Fig. 11, for the prevention of aliasing due to decimation.
Fig. 14 also shows the maximum error level for the standard
IFA computation scheme using the Hanning window and the
low-pass filter together. Since no decimation is employed for
the standard IFA computation, the decimation filter does not
improve the results in this case, compared to the corresponding
error result in Fig. 2. The errors due to the high-frequency
components are sufficiently reduced by the smoothing window
and the threshold is already reached. The error results in
Fig. 14 are improved to a certain extent, for the 4-times-
better sampled source grid excitation with respect to Fig. 2,
in which no decimation filter was used. Most importantly, the

error levels for , , and are below the level of
case, contrary to Fig. 2. The source grid resolves

frequency components up to GHz in each excitation
scheme. However, the cutoff frequency is selected as 10 GHz
in all four excitation schemes. In order to realize the same low-
pass filter in wider frequency bands, longer digital filters are
used. 128-, 256-, 512-, and 1024-point digital low-pass filters
are designed for the 4-, 8-, 16-, and 32-times finely sampled
source grid excitations, respectively [16], [17].2

Comparing the error results presented in Figs. 3 and 13 or
those in Fig. 2, one can conclude that it is possible to improve
the accuracy of the incident-field excitation in the FDTD
method by as much as three orders of magnitude without
increasing the cost of the algorithm. This is accomplished by
using a better sampled 1-D source grid in conjunction with a
properly designed decimation filter.

VI. A SPECIAL CASE: NORMAL INCIDENCE

In the previous sections, the performances of smoothing
windows and filters have been evaluated with respect to the

2J. N. Little and L. Shure,MATLAB Signal Processing Toolbox User’s
Guide,MathWorks, Natick, MA, 1992.
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Fig. 14. The maximum errors onEz for 4-, 8-, 16-, and 32-times-better sampled IFA excitations with half-period-long Hanning window used together with the
decimation filter. The result of the standard IFA excitation (M = 1) with a half-period-long Hanning window and decimation filter is also shown (labeled as “1”).

level of an error signal, which was defined as the difference
of the total- and incident-field values. However, the FDTD
algorithm may produce exactly zero error, defined in this
sense, in some special cases. These special cases are the cases
of the normal incidence of a plane wave in the computational
domain. Normal incidence means the propagation of the wave
along the -, -, or -axis.

When the source grid is sampled with the same space and
time steps as the 3-D computational domain and the direction
of the incident wave is , , or , the two propagation
schemes in the 1-D and 3-D grids become identical. The
electric- and magnetic-field components coincide on the two
grids, both in space and time. Thus, there is no need to carry
out any interpolation to compute the incident-field values.
These values are taken directly from the elements of the 1-D
source vector. Moreover, the correction factor

in (1) and (2) is equal to unity for the normal
incidence of the plane wave. The equations in the 3-D grid
include the difference of two transversal components due to
the curl operation. However, the wave has no variation in the
transversal direction and the corresponding difference always
vanishes. Therefore, the finite-difference update equations
become identical for the field components in the 1-D source
grid (IFA) and the 3-D computational grid. Since the two
propagation schemes are identical, the incident wave goes
through the same dispersion in the two grids, and the resultant
waves are exactly the same. The scattered field is exactly zero
in the scattered-field region and the difference of the total field
in the total-field region and the incident field in the IFA is
exactly zero. However, this does not mean that the total-field
signal is exactly the same as the desired perfect sinusoid. It
merely means that exactly the same discretized, thus imperfect,
sinusoidal signal is propagated in the two grids.

On the other hand, when a higher sampling rate is used in
the 1-D source grid, the perfect one-to-one correspondence of
the 1-D and 3-D does not hold anymore. There is still no need
for any interpolation, but the dispersion in the source grid is
changed. Thus, the incident field on the 1-D source grid no
longer exactly matches the total field in the 3-D grid. However,
the quality of the total-field signal is improved in the sense
that it is closer to the desired perfect sinusoid. Fig. 15 shows
the difference of the amplitude3 of the total-field signal from
the amplitude of a perfect sinusoid, which is unity, for three
different incident-field computation schemes. In these results,
the incident plane wave is the same as before, except that it
propagates in the direction of , . In Fig. 15(a),
the amplitude errors obtained by using the standard IFA
computation scheme and a half-period-long Hanning window
are shown. Increasing the sampling frequency in the source
grid by eight times produces the results shown in Fig. 15(b).
Since no decimation filter is used in this example, the error
results are worse in Fig. 15(b) than in Fig. 15(a). However,
when the decimation filter is used on the input signal before
feeding into the hard source, the amplitude errors, as shown
in Fig. 15(c), are decreased by about two orders of magnitude
with respect to Fig. 15(a). Thus, the use of better sampled
source grid together with a properly designed decimation filter
helps increase the accuracy of the incident-field excitation even
for the special case of normal incidence.

VII. SCATTERING RESULTS WITH FINER IFA EXCITATION

The effects of improving the accuracy of the incident-
field excitation using the methods of this paper can also be
demonstrated by a scattering problem. A square metal plate of

3In this paper, the amplitudes of quasi-sinusoidal signals are computed
at every time step using the method outlined in [8, Appendix] and [19,
Appendix].
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(a)

(b)

(c)

Fig. 15. Errors on the amplitude computations ofEz at normal incidence. The three results are obtained with: (a) standard IFA excitation with half-period-long
Hanning window; (b) 8-times-better sampled IFA excitation with half-period-long Hanning window; and (c) eight-times-better sampled IFA excitation with
the decimation filter and a half-period-long Hanning window.

size 20 1 20 Yee cells is modeled for this purpose. The
plate lies on the – -plane, in the middle of a computational
domain consisting of 40 20 40 cells, which is divided
into a total-field region of 28 8 28 Yee cells and a six-
cell-thick scattered-field region. The incident plane wave is
identical to the one in Section III.

The component of the far-zone electric field is extrap-
olated at two far-zone points

and . A time-domain far-
zone extrapolation scheme [18] is used for this purpose. The
integration surface used for the far-zone transformation is a
parallelepiped located two cells out of the total-field/scattered-
field interface. Fig. 16(a) shows the amplitude ofat the two
far-zone observation points, as computed using a standard IFA
excitation scheme ( ) and a half-period-long Hanning
window. Fig. 16(b) shows the corresponding results for an
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(a)

(b)

Fig. 16. Amplitude of the far-zone electric-field componentE� in the directions(�; �) = (90�; 225�) and (�; �) = (90�; �45�). The incident fields
are computed with (a) standard IFA excitation (M = 1) and (b) 8-times-better resolved IFA excitation (M = 8) and a decimation filter. A half-period-long
Hanning window is used for smoothing in both cases.

8-times-better sampled source grid with the same smoothing
window and a decimation filter. Comparing these results,
we notice that as the excitation errors are reduced, both the
oscillations on the signals are diminishing and the accuracies
of the steady-state levels of the signals are improving.

VIII. C ONCLUSIONS

In this paper, we have presented an efficient technique to
improve the accuracy of the incident-wave excitations in the
FDTD calculations. The IFA excitation scheme is known to
be more efficient, but less accurate, than the CFIF excitation
scheme. The 1-D source grid in the IFA excitation scheme
can be sampled finer to reduce the dispersion error due to dis-
cretization in the 1-D FDTD calculations, hence, to render the
incident field more accurate. However, we have demonstrated
that a direct application of this straightforward procedure
does little or nothing to reduce the FDTD errors. Upon a
careful analysis of the reasons behind this counterintuitive
outcome, we have found that the interpolation operation used
to transfer the incident-field values from the 1-D source grid
to the 3-D computational domain behaves as an inherent
downsampling or decimation process. Unless the decimated
signal is sufficiently band-limited or a properly designed low-
pass filter precedes the decimation operation, aliasing occurs.

Subsequently, we have been able to reduce the FDTD errors
by as much as three orders of magnitude by using a decimation
filter in conjunction with the finer sampling of the 1-D source
grid in the IFA excitation scheme. Similar improvements have
been demonstrated for the special case of normally incident
waves and for a scattering problem. The technique presented
in this paper can be used for the excitation of the FDTD grid
by any incident wave, not just plane waves or waves with
sinusoidal time dependence.

ACKNOWLEDGMENT

The authors would like to thank two anonymous review-
ers for their useful suggestions and careful review of the
manuscript.

REFERENCES

[1] K. S. Yee, “Numerical solution of initial boundary value problems in-
volving Maxwell’s equations in isotropic media,”IEEE Trans. Antennas
Propagat.,vol. AP-14, pp. 302–307, Apr. 1966.

[2] A. Taflove, “Review of the formulation and applications of the finite-
difference time-domain method for numerical modeling of electromag-
netic wave interactions with arbitrary structures,”Wave Motion,vol. 10,
no. 6, pp. 547–582, 1988.

[3] A. Taflove and K. R. Umashankar, “Review of FD-TD numerical
modeling of electromagnetic wave scattering and radar cross section,”
Proc. IEEE,vol. 77, pp. 682–699, May 1989.

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on August 13, 2009 at 03:34 from IEEE Xplore.  Restrictions apply. 



882 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 6, JUNE 1998

[4] K. S. Kunz and R. J. Luebbers,The Finite Difference Time Domain
Method for Electromagnetics.Boca Raton, FL: CRC Press, 1993.

[5] A. Taflove, Computational Electrodynamics: The Finite-Difference
Time-Domain Method. Norwood, MA: Artech House, 1995.

[6] K. L. Shlager and J. B. Schneider, “A selective survey of the finite-
difference time-domain literature,”IEEE Antennas Propagat. Mag.,vol.
37, pp. 39–56, Apr. 1995.

[7] A. Taflove and K. Umashankar, “Radar cross section of general three-
dimensional scatterers,”IEEE Trans. Electromag. Compat.,vol. EMC-
25, pp. 433–440, Apr. 1983.
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