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Introduction

The solution of the integral-equation problems via the multilevel fast multipole al-
gorithm (MLFMA) has proved to be a successful approach in computational electro-
magnetics. Among many applications that integral equation methods are applicable,
some problems involve open geometries, for which the use of the electric-field inte-
gral equation (EFIE) is compulsory. On the other hand, some other applications,
e.g., scattering from volumetric targets, involve closed surfaces. The combined-field
integral equation (CFIE) is the preferred choice for these problems because it is free
from the internal-resonance problem and it provides linear systems that are easier
to solve iteratively compared to those obtained with EFIE [1]. To increase robust-
ness and to speed up convergence, preconditioners that approximate the near-field
matrix (i.e., incomplete LU or ILU) or its inverse (i.e., sparse approximate inverse
or SAI) have been used and shown to be beneficial in moderate size problems [2], [3].
However, as the problem size gets larger, the near-field matrix becomes increasingly
sparser and it becomes harder to solve linear systems with these preconditioners in
acceptable times.

In this work, we propose a preconditioner that approximates the dense system op-
erator. For this purpose, we develop an approximate MLFMA (AMLFMA), which
performs a much faster matrix-vector multiplication with some relative error com-
pared to the original MLFMA. We use AMLFMA to solve a closely related system,
which makes up the preconditioner. Then, this solution is embedded in the main
solution that uses MLFMA. By taking into account the far-field elements wisely,
this preconditioner proves to be much more effective compared to the near-field
preconditioners.

In [3], a similar preconditioning scheme has been shown to increase robustness for
the solution of large real-life problems employing EFIE. However, we argue that
the AMLFMA preconditioner is more efficient both in terms of memory and com-
putational time. In the following sections, we present some of the details of the
AMLFMA preconditioner and we provide comparisons with other strong precondi-
tioners to show that not only our preconditioner increases the robustness, but it also
decreases the solution time drastically.
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AMLFMA Preconditioner

MLFMA performs a fast dense matrix-vector multiplication with a desired accuracy.
The maximum error is controlled by the truncation number

L ≈ 1.73ka + 2.16(d0)2/3(ka)1/3 (1)

of the translation function, where a is the cluster size of the level and d0 is the
accurate number of digits [4]. Both the computational time and the memory re-
quirement of the operations for a level are proportional to L2. A less-accurate but
cheaper version of MLFMA can be constructed by reducing the number of accurate
digits d0 as in [3]. However, the truncation number loosely depends on the value of
d0 for large boxes in the higher levels of MLFMA. For example, for an eight-level
problem, if the number of accurate digits is reduced from four to one as in [3], the
truncation number of the highest level decreases from 380 to 361, and this corre-
sponds to only 5% reduction. Hence, as the problem size increases, this approach
becomes less effective. Moreover, new sets of arrays are needed for the radiation
(receiving) patterns of the basis (testing) functions for the less-accurate MLFMA,
and this adds a significant cost to the memory requirement.

In this work, we propose a less-error-controlled but much cheaper version of MLFMA.
We call this version AMLFMA, which serves as a preconditioner. For this purpose,
we redefine the truncation number for level l as

L′
l = L1 + af (Ll − L1), (2)

where L1 is the truncation number defined for the first level, Ll is the original
truncation number for the level l calculated by using (1), and af represents the
approximation factor, which is defined in the range from 0.0 to 1.0. As af decreases
from 1.0 to 0.0, AMLFMA becomes less accurate but increasingly cheaper. Since the
truncation number of the lowest level is not modified, AMLFMA does not require
extra computation load for the radiation and receiving patterns of the basis and
testing functions when it is used in conjunction with MLFMA in a nested manner.

To demonstrate the accuracy of AMLFMA, we analyze the relative error in the
output vector y for the matrix-vector product y = A · x, where x is a vector of
ones. In Figure 1, we show the number of elements of the output vector y satisfying
different error levels. It is interesting to observe that we achieve moderately accurate
matrix-vector multiplications, even with af = 0.2. This is because, for determining
the truncation number, we consider the worst-case scenario for the positions of the
basis and testing functions to guarantee the desired level of accuracy. However,
there are usually many interactions that can be computed accurately by using lower
values for the truncation numbers. Hence, these interactions become useful in the
construction of powerful preconditioners, where the accuracy is not critical.

AMLFMA preconditioner is used in an inner-outer solution scheme, where the outer
solver should be a flexible Krylov method for the solution of the original linear
system. The inner solver is another Krylov method employing AMLFMA, which
performs the preconditioning. To obtain maximum efficiency, we need the best
approximation with the least possible effort for the inner solution. For AMLFMA
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Figure 1: Error levels of AMLFMA with various values of af for a patch problem
of 137,792 unknowns. The reference is MLFMA with three accurate digits.

with af = 0.2, almost all elements of the output vector y is computed with less than
0.1 error, while the computation time is significantly reduced. Hence, if we fix the
error threshold at 0.1, AMLFMA(0.2) seems to be the best choice. Lower residual
errors necessitate a more accurate matrix-vector multiplication, whose computation
time cannot be reduced so effectively.

Numerical Results

We compare AMLFMA preconditioner with SAI and another inner-outer solution
scheme called NF/SAI, which proved to be highly successful for EFIE problems [5].
AMLFMA preconditioner uses af = 0.2 and the inner solver tolerance is set to 0.1
or a maximum of 10 iterations. The inner solution is accelerated with SAI, for which
the near-field pattern is used for the approximate inverse. For NF/SAI, the iterative
solution of the near-field matrix provides the preconditioning. This inner solution is
also accelerated by SAI and the inner stopping criteria is set to 0.1 residual error or
a maximum of only three iterations. For CFIE, we use the familiar block-diagonal
preconditioner (BDP) instead of NF/SAI. We use the flexible solver FGMRES in
the outer iterations and GMRES in the inner iterations or with SAI and BDP [6].
Numerical solutions are carried out on 32 cores of an Intel quad-core Xeon cluster
connected via an Infiniband network.

Table 1 provides the details of the problems. Only the helicopter problem involves
a closed geometry for which CFIE is employed. Other problems are modelled with
EFIE. Figure 2 presents the plots of the residual norms against solution times. These
results demonstrate the outstanding performance of the AMLFMA preconditioner;
open-geometry problems are solved two times faster compared to SAI, and 1.5 times
faster compared to NF/SAI. The speedup in the helicopter problem is even more
impressive; this large problem is solved four times faster compared to BDP and 2.5
times faster compared to SAI.



Table 1: Information about the problems.
Frequency Size MLFMA Unknowns

Problem (GHz) (λ) Levels N

Reflector Antenna 1 25 8 356,439

Patch 96 96 10 3,164,544

Open Prism 80 139 11 2,929,136

Helicopter 2.66 110 11 2,957,616
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Figure 2: Residual versus time plots for the geometries listed in Table 1.
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